水稻养鱼蟹综合高产技术试验与探索

水稻养鱼蟹综合高产技术试验与探索

一、水稻套养鱼蟹综合高产技术试验与探索(论文文献综述)

徐跑[1](2021)在《中国稻鱼综合种养的发展与展望》文中研究表明中国是最早开展稻田养鱼的国家。随着国家的重视和大力发展推广,稻鱼综合种养产业得到了迅速发展,在中国生态循环农业经济中占有较大比例。本文通过概述稻鱼综合种养的原理及关键技术、主要模式、相关研究现状和存在的问题,从经济、社会、生态效益3方面阐述了稻鱼综合种养的贡献,通过对比分析,提出了深入开展基础理论研究,加强技术研发、创新和普及,推进稻鱼综合种养的产业化和规模化水平,加强稻鱼产品品牌建设,加快培育新型经营主体等未来发展建议,以期为稻鱼综合种养产业的绿色健康高质量发展提供科学参考。

曲兆凯[2](2021)在《宁夏稻渔模式水肥调控、放蟹密度和饲料投喂量对水稻及鱼蟹产量和品质的影响》文中认为针对宁夏贺兰县稻渔模式水肥利用率较低,无水肥调控、放蟹密度、饲料投喂量最优组合方案可循等问题,采用正交试验与随机区组设计方法,系统地进行了稻渔模式的(下)不同稻田水层深度、沼肥及氮肥施量、放蟹密度、饲料投喂量对水稻与河蟹生长、产量和品质等指标的影响研究,对促进宁夏稻渔模式提质增效和现代化生态灌区建设具有重要的指导作用和现实意义。主要研究成果如下:(1)采用四因素三水平正交试验,研究了稻蟹模式的不同水层深度(H)、追肥量(F)、放蟹密度(D)、饲料日投喂量(S)对水稻与河蟹生长、光合、产量和品质的影响。试验得出了不同因素对水稻与河蟹生长指标、产量和品质的主次因素、单因素变化规律和综合指标的因素最优组合方案。结果表明:水稻光合指标(Pn、Gs、Tr)和SPAD值随H与F的增大而增大,随着D和S的增大先升高后降低,H和F对于净光合速率(Pn)影响显着,D和S影响不显着,因素主次顺序为F>H>D>S;水稻与河蟹的产量均随着H和F的增加而增加,水稻产量随D和S的增加先增后减,河蟹产量随着D增加而显着增加,随S的增加先增后减,对水稻与河蟹产量影响的因素主次顺序分别为F>H>D>S、D>H>F>S,四因素对水稻与河蟹产量均有显着性影响;稻米食味值随着H和D增加而增加,随着F增加先增后降,随着S增加而降低,H、F和S对于食味值影响显着,D影响不显着,因素主次顺序为H>F>S>D;蟹肉粗蛋白、粗灰分、氨基酸总量(TAA)及钙含量均随H与F的增大而增大,除钙含量随S的增大而减小外,其余均随D和S的增大先升高后降低,H和F影响显着,D和S影响不显着,各因素对TAA和钙含量主次顺序为H>F>D>S;各处理水稻成熟后期稻田土壤养分比初始土壤均有不同程度增加,其中碱解氮、有效磷、速效钾和有机质分别提高了 32.1%~86.5%、2.8%~109.1%、61.9%~91.5%、5.1%~72%,pH和水溶性盐含量分别降低了 0.9%~4.3%、33.5%~47.3%;土壤有机质含量随着四因素的增大而增大,H和F有显着性影响,D和S影响不显着,因素主次顺序为H>F>S>D。综合考虑主次因素、显着性和稻蟹种养综合成本与经济效益,确定最优水平组合为H3F3D2S1,即采用水层深度为11cm,追肥量为6+300+400kg/667m2(尿素+沼渣+沼液)、放蟹密度为6kg/667m2,饲料日投喂量为480g/667m2时,水稻与河蟹的产量最高,分别为653.32kg/667m2、29.64kg/667m2,同时二者品质也较优,稻米食味值为83.7分,蟹肉氨基酸总量为15.85g/100g,稻田土壤养分含量相对较高,土壤有机质含量为14.53g/kg,对盐碱地改良效果较好。(2)采用二因素三水平随机区组试验,研究了稻蟹模式的不同稻田水层深度和氮肥追施量对水稻与河蟹生长、光合、产量和品质的影响。结果表明:浅水层低肥(H1F1)处理的水稻生长、光合、产量及品质指标比中水层中肥(H2F2)对照和其他7个处理更优,H1F1处理水稻株高比对照提高8.92%,净光合速率提高30.72%,水稻产量增加11.41%,稻米胶稠度和食味值分别增加5.5%和2.9%。深水层低肥(H3F1)处理的河蟹生长、产量及品质指标比对照(CK)和其他7个处理更优,H1F1处理的河蟹体重、体长和产量较对照分别提高14.8%、30.7%和9%,河蟹肌肉粗蛋白含量与氨基酸总量较对照分别增加18.9%和14.2%。综合考虑经济效益和稻蟹种养成本,采用“10+20”cm的浅水层、“4+10”kg/667m2氮肥追施量的稻蟹模式较优,水稻与河蟹产量分别为597.25kg/667m2、28.12kg/667m2,稻米食味值为76.8分,蟹肉氨基酸总量为14.31g/100g。(3)采用对比试验,在稻鱼和稻蟹两种模式下,分别设置沼液低施量(B1)和沼液高施量(B2)稻田及环沟为处理,以常规追施尿素稻田及环沟为对照(CK),研究了稻田施加沼液对草鱼与河蟹的生长、产量和品质的影响。结果表明,两个施加沼液处理的鱼、蟹的形体指标均优于对照,B1处理的鱼、蟹形体指标优于B2,鱼、蟹产量大小顺序均为B1>B2>CK;此外,稻田施加适量沼液对于草鱼肌肉系水力有改善作用,但沼液施量过多不利于草鱼的储存和加工,其中B1和B2滴水损失较CK分别显着降低17.4%和12.4%;鱼、蟹肌肉水分含量均随着沼液施量的增加而降低,但差异不显着(P>0.05);鱼、蟹肌肉pH大小顺序为B2>B1>CK,均存在显着性差异(P<0.05),其中B1和B2雄蟹肉pH较CK分别显着增加5.8%和12.1%,鱼肉分别显着增加10.4%和17.9%;鱼、蟹肌肉粗蛋白、磷、铁和钙含量大小顺序均为B1>B2>CK,各处理间存在显着性差异,且河蟹不同性别间也存在显着性差异;稻田鱼、蟹均测得17种氨基酸,其中沼液处理鱼、蟹肌肉氨基酸总量(TAA)均显着大于对照,其中B1和B2雌蟹较CK分别增加24%和17.7%,草鱼分别为16.7%和12.6%,B1与B2之间差异不显着;各处理与对照蟹黄TAA均显着大于蟹膏;鱼、蟹必需氨基酸指数(EAAI)大小顺序均为B1>B2>CK。综上说明,稻田施加适量沼液(B1)对草鱼与河蟹的生长发育具有一定的改善作用,有助于鱼蟹营养成分的积累和肌肉风味的提高,但沼液施加过多(B2)起负面作用。综上,在稻鱼和稻蟹模式生育期内,稻田水面蒸发量分别为723.3mm和709.3mm,降雨量均为123.7mm的前提条件下,B1处理的鱼、蟹生长与品质较优,即灌溉13次,每次保持稻田水层深度稻鱼模式六月为15cm,七至九月为25cm,稻蟹模式为15cm,施沼液肥6次,前三次为200kg/667m2,后三次为100kg/667m2,施沼液肥总量为900kg/667m2,草鱼与河蟹产量分别为153.62kg/667m2和31.58kg/667m2,两种模式水稻产量分别为 585.22kg/667m2和 592.31kg/667m2,需水量分别为 692m3/667m2 和 656m3/667m2,水稻水分生产效率分别为0.84kg/m3和0.9kg/m3。

陈泽[3](2021)在《基于Android的稻田综合种养决策支持系统研发》文中指出稻田综合种养模式繁杂多样,技术要求各异,关键环节多元,知识单元离散,信息孤岛林立,迫切需要先进实用的信息系统支撑。而移动手机端系统用户海量,携带方便,且功能强大、应用灵活,是稻田综合种养决策支持功能实现与应用的优质平台。本文针对稻田综合种养移动手机端决策支持系统缺乏的问题,运用稻田综合种养技术原理与方法以及水稻栽培技术和水产畜禽动物养殖技术等,选用XML和Java语言与Spring、SpringMVC、Mybatis 等框架以及 Android Studio、Intellij IDEA 等开发工具,研发了基于Android的稻田综合种养决策支持系统V1.0,实现了移动端与服务器端数据同步。主要研究结果如下:(1)搜集整理和归纳总结了大量的数据信息,系统建立了覆盖28种稻田综合种养模式的籼粳稻品种、水稻和水产畜禽动物病虫害防治等数据库与知识库,丰富了稻田综合种养决策支持系统内容体系,可为用户提供一个快速学习和查询检索的共享资源平台。(2)根据稻田综合种养技术规范与水稻群体质量和精确定量栽培、水产畜禽动物养殖、水质规范等相关知识,结合稻田综合种养实际,分别构建了水稻品种筛选、基本苗计算、精确施肥、病虫害防治、适宜水质、饲料投喂、经济效益计算等计算机模型,为辅助决策功能的实现创造条件。(3)运用Android Studio开发平台,以XML和Java语言完成前后端编码,研发出基于Android的稻田综合种养决策支持系统。该系统集成了 28种稻田综合种养模式介绍与水稻品种筛选、基本苗计算、精确施肥、病虫害防治和适宜水质、饲料投喂、经济效益计算等精准决策支持功能,且移动端软件界面小巧、功能完备、易于使用、移植性强,是稻田综合种养从业人员自主学习和自主决策的信息化新平台。

陈启文[4](2021)在《中国海水稻背后的故事》文中指出袁隆平是世界杂交水稻之父,他在水稻产量上创造了世界奇迹。本文以翔实的材料讲述了正在研发的水稻新品种"海水稻"的培育过程。海水稻首先被陈日胜发现并培育选种20年,袁隆平发现其价值之后,进行了规模化的科研、扩种及海外开拓。袁隆平团队在海水稻栽培上的探索与成果值得赞赏,中国以及世界的粮食安全问题更应该被公众关注。

唐建军,胡亮亮,陈欣[5](2020)在《传统农业回顾与稻渔产业发展思考》文中指出对传统农业的深入理解无疑有助于对农业现代化的推进。稻渔共生产业作为优秀传统农业的典范,对于推进中国农业现代化进程与可持续发展和世界稻渔共生产业的健康发展具有重要的启迪作用。本文从人类文明发展历程,尤其是中国传统农业文明发展历程的回顾切入,简要介绍了重要农业文化遗产的概念、内涵、实施及意义,并以传统稻鱼共生系统为例,深刻分析其传衍数千年的科学机制,讨论了稻渔共生产业发展面临的技术挑战及未来发展战略。研究指出,农耕文明的核心理念在华夏文明发展过程中具有重大的现实意义,而于20世纪60年代初期兴起并不断隆盛的石油农业则可能存在包括农业生物多样性简化、农用化学品依赖、生产成本增高、资源竞争激烈、环境压力增大以及这些工业化的现代农业对发展中国家传统农业产生的不对等的利益竞争和负面影响显而易见。在政府政策激励以及来自科技工作者、技术人员和从农者的共同努力下,从中国优秀传统农业的典范传统稻鱼共生系统逐渐衍生、演变形成的稻渔共生生态种养产业在提高水土资源利用效率、丰富稻田产出、提高农民收入、减少面源污染等方面独具优势。研究表明,相关从业人员需要高度关注现阶段稻渔共生产业发展过程中所遇到的诸如模式选用、景观与农业生物多样性布设、种养协调、肥力调控、产品营销等技术细节问题并加以用心对待、科学掌握。因此提出,未来稻渔共生产业的发展还需要解决农艺机械化、投施精准化、农事省力化等新挑战,并呼吁学界、业界和政策制定部门等聚焦合力解决。

管卫兵,刘凯,石伟,宣富君,王为东[6](2020)在《稻渔综合种养的科学范式》文中进行了进一步梳理21世纪是渔业的世纪。中国和世界水产业历经数十年的发展为人类应对食品危机做出了巨大贡献。然而,我国传统的水产业对产量的片面追求导致养殖环境日趋恶化,养殖生态系统不断退化,养殖业的可持续发展受到限制。传统稻田其氮素的流失亦是导致农业面源污染的主要原因之一。我国当前的环境问题源于复合生态系统演化进程的缺陷,解决当前的环境问题,必须从优化复合生态系统演化进程着眼。采用优化的生态循环水产养殖模式,如综合水产养殖则可以大大提高氮、磷等养分物质的利用率。稻渔综合种养是一种科学的复合生态模式,可以概括为三种模式,一种是在我国传统稻田养鱼的基础上,逐步发展起来的一种稻渔共生模式,可采取稻鱼、稻蟹、稻虾等多种共作形式;二是稻田作为湿地用于处理水产养殖尾水的模式,属于异位处理形式;三是将稻渔共生和水产养殖相耦合的模式,尤其是与多种水产养殖形式结合或与复合水产养殖系统相结合,甚至是与农牧系统相结合。这第三种稻渔共作模式又称为陆基生态渔场,具有高产、高品质、高生态可持续性等特点,应加强对该创新养殖模式中有机碳、氮、磷等营养收支平衡和循环利用的相关机制以及复合生态系统对外源营养输入的整体响应机制开展研究。概括而言,尾水排放是传统池塘养殖中氮源的主要流失途径,颗粒物吸附沉降是池塘养殖中磷源的主要流失途径,而系统中的碳源则主要是通过鱼类等生物的呼吸作用进行消耗。基于生态循环的"稻渔共生-池塘复合生态系统"则恰好可以解决这三大类营养物质在生态系统中的高效保持和利用问题,实践业已证明该复合系统拥有较高的产量、品质和生态效益,是一种可持续的农业发展模式。稻渔复合生态系统的创新模式因其特有的生态循环机制及系统的高弹性、高缓冲性、高可持续性,将成为我国乃至世界应对农田、渔业生态系统的退化,复合高效解决渔业、农业或农牧业生态环境问题的典型范式。

徐富贤,周兴兵,张林,蒋鹏,刘茂,郭晓艺,朱永川,熊洪[7](2020)在《稻田养鱼与氮密互作对土壤肥力、水稻产量及其养分累积的影响》文中认为为了给稻田养鱼的施肥管理提供科学依据。试验以杂交中稻新品种‘内6优106’为材料,在3个鱼-氮处理(CK:不养鱼+不施氮、F:养鱼+不施氮、FN:养鱼+施氮150 kg/hm2)和4个本田栽秧密度下,研究稻田养鱼与氮密耦合对土壤肥力、水稻产量及其养分吸收累积的影响。结果表明:稻田养鱼后的有机质显着提高、氮素能维持平衡、磷钾素则显着下降。鱼氮处理水稻产量、地上部干物质及氮、磷、钾累积的总体趋势表现为FN>F>CK,FN与F分别比CK显着增产22.98%和13.43%。栽秧密度在9.0万~22.5万穴/hm2范围内稻谷产量无显着差异,干物质和氮累积影响随密增加而增加。每1000 kg稻谷的地上部植株氮、磷、钾素的需要量分别为10.24~16.74、1.31~2.72、34.38~56.49 kg/hm2。中高产养鱼稻田在施肥管理上应控制氮肥和增施磷钾肥。

李荣福,寇祥明,王守红,孙龙生,王曙光[8](2020)在《新中国稻田渔业发展的经验启示》文中研究指明通过回顾新中国成立70年稻田渔业的发展成就和主要经验,根据稻田渔业生产力水平和生产方式及其所处的经济体制、社会需求和经济政策条件,将新中国成立70年稻田渔业发展过程为三个发展时期,其中第一、第二发展时期,又分别划分为两个阶段。从党和政府政策推动、稻田渔业理论与技术创新、经营方式转变、重要农业文化遗产等方面,系统分析了稻田渔业发展的主要动力和社会原因,并对十八大之后,稻田渔业顺应生态文明新时代要求和新发展理念,进行生态化探索,在提升湿地生态功能、提高生态安全、引导绿色健康生活和带动生态文化旅游等方面理论和实践经验进行了总结。

沈玺钦[9](2020)在《银川大型稻蟹共生和水产养殖耦合系统水质和稻蟹生长研究》文中研究表明稻渔综合种养在新的时代有了新的要求。水稻方面种植既要求产量品质,又要求节省减肥,去除养殖尾水的氮、磷等营养;渔业方面养殖既要求高品高产,又要求减少投喂。本文从大型稻蟹共生和水产养殖耦合系统养殖鱼塘水质、大型稻蟹共生和水产养殖耦合系统稻蟹共生水质、大型稻蟹共生和水产养殖耦合系统水稻生长研究和大型稻蟹共生和水产养殖耦合系统中华绒螯蟹成熟群体生殖特征与条件状况等多个方面阐述新时代稻渔综合种养的基本方法,本质要求。一、大型稻蟹共生——水产养殖耦合系统水质研究。面对现代渔业绿色发展的新格局,在银川市贺兰县光明渔村应用陆基生态渔场技术开展了稻蟹共生和水产养殖耦合系统生态应用。应用水质分析仪对系统内的部分水质指标进行检测,系统阐述了光明渔村养殖鱼塘系统、稻蟹共生系统和循环沟渠净化系统(稻田-池塘复合统)的水质变化规律。精养鱼塘系统:平均氨氮浓度从总进水口的0.793mg/L上升到总出水口的1.553mg/L,亚硝酸盐平均浓度从总进水口的0.094mg/L上升到总出水口的0.226mg/L。稻蟹共生系统:氨氮浓度从进水口的0.42mg/L降低到出水口的0.13mg/L,净化效率达到69.05%,磷酸盐含量进水口浓度低,出水浓度高,边沟中由于扰动,磷酸盐浓度相对较高,而氨氮浓度相对较低,田中间的氨氮、磷酸盐浓度相对中等。沟渠循环净化系统:平均氨氮含量从1.247mg/L降低到0.363mg/L,磷酸盐平均含量从0.203mg/L降低到0.01mg/L。8月生产旺季稻蟹共生系统稻田环沟的悬浮有机物浓度:8月2日各个稻田环沟悬浮有机物的平均浓度为127.45mg/L,8月6日各个稻田环沟悬浮有机物的平均浓度为20.36mg/L,8月30日稻田退水前各个稻田环沟悬浮有机物的平均浓度为85mg/L。8月生产旺季稻蟹共生系统稻田环沟水质:亚硝酸盐浓度始终保持较低水平,多次测得0mg/L,各田块环沟平均氨氮浓度为0.105mg/L,平均磷酸盐浓度为0.04mg/L。清水输入鱼塘,鱼塘排出了大量肥水通过沟渠进入稻田中,经沟渠和稻田净化后的清水再次注入鱼塘,使得整个系统水质得到改善,生产效率以及产量因此大大提高。表明该模式有助于实现水稻种植和水产养殖两种产业的协调发展,减少养殖尾水排放,实现养殖污染资源化。二、大型稻蟹共生——水产养殖耦合系统水稻生长研究。在不同情况下稻田的灌溉模式影响了水稻的生长以及产量。实验分为每隔5d灌溉一次鱼塘水,每隔7d灌溉一次鱼塘水以及不灌溉鱼塘水。水稻种植品种为“吉宏6号”,水稻平均亩产1089.93斤,总体旱田亩产高于水田,不同灌溉周期亩产5d灌溉一次>7d灌溉一次>不灌溉鱼塘水。地上部分生物量旱田大于水田,旱田水稻生物量到成熟期平均达到115.86g/穴,而水田水稻生物量在成熟期平均值只有55.04g/穴。7号田和11号田为每隔5d灌溉一次,生物量在同比于其它水田较高,平均值达到68.9g/穴。各田块秆长在抽穗期过后便不再增长,相对于其它指标,秆长在抽穗期过后还算比较稳定。各个田块株高在抽穗期达到峰值,抽穗期之后略有减少。水稻秆基部外径在抽穗期达到峰值,抽穗期到成熟期略有减少。灰色关联度分布在0.576-0.907之间,各水稻根茎秆构成因子与水稻产量关联度由强到弱排序依次为:根长(0.907)>秆基部外径(0.863)=穗基部外径(0.863)>秆长(0.846)>株高(0.829)>穗长(0.776),根长是与水稻产量关联度最大的根茎秆构成因子,穗长是与水稻产量关联度最小的根茎秆构成因子;水稻产量构成因子与水稻产量关联度由强到弱排序依次为:有效穗数(0.869)>穗粒数(0.847)>生物量(0.813)>结实率(0.806)>千粒重(0.759)>每公顷穴数(0.715)>根干重(0.625)>成穗率(0.576),有效穗数是与水稻产量关联度最大的产量构成因子,成穗率是与水稻产量关联度最小的产量构成因子。三、为了探求大型稻蟹共生——水产养殖耦合系统中华绒螯蟹(Eriocheir sinensis)成熟阶段的生殖特征,在宁夏回族自治区银川市贺兰县光明渔村采用了统计学、资源生物学等相关研究方法分析了宁夏回族自治区银川市贺兰县光明渔村中稻田养蟹基地稻田中华绒螯蟹性腺、肝胰腺、条件指数,以了解目前银川地区中华绒螯蟹养殖成熟群体的生长生殖特征。结果表明,2019年基地稻田产量大但规格偏小,这主要受当年气温偏低且采用不投料的粗放养殖模式所致。头胸甲宽主要分布在32-61mm之间,头胸甲长分布在37-59mm之间,体重在22-101g之间。10月24日中华绒螯蟹头胸甲宽主要分布在35-50mm,而11月20日主要分布在35-55mm。中华绒螯蟹头胸甲长10月24日主要分布在40-50mm,而11月20日则各区间都有一定分布。10月24日中华绒螯蟹体重主要分布在20-50g,而11月20日在20-65g各个组里相对更平均的分布。整体上有趋于平均的趋势。中华绒螯蟹体重与头胸甲宽呈幂函数关系,雄性y=0.001x2.8875,R2=0.8877,雌性y=0.0016x2.7204,R2=0.9315。中华绒螯蟹头胸甲长与头胸甲宽呈线性关系,雄性CW=0.9017CL+0.5638,R2=0.9759,雌性CW=0.9466CL-1.1013,R2=0.9377。中华绒螯蟹头胸甲长与体重呈幂函数关系,雄性W=0.0006CL2.9316,R2=0.233,雌性W=0.0007CL2.8717,R2=0.9363。中华绒螯蟹头胸甲宽与肝胰腺重呈线性关系,雄性:HW=0.2351CW-7.5852,R2=0.8117,雌性HW=0.0904CW-1.9197,R2=0.2305。肝体指数与头胸甲宽呈线性关系,雄性为正相关,雌性为负相关。雄性HIS=0.1064CW-0.3422,R2=0.3102,雌性HIS=-0.0993CW+8.6023,R2=0.0538。输精管重和肝胰腺重呈指数函数关系,HW=0.8129e0.8991VW,R2=0.602。肝胰腺重与卵巢湿重呈二次函数关系HW=0.0581OW2-0.2266OW+1.835,R2=0.1075。四、大型稻蟹共生——水产养殖耦合系统产量分析。水稻亩产量总体上旱田高于水田,这是由于种植模式不同的原因。有的水田水稻产量不高但是因为放养中华绒螯蟹,故亩产值较高,养殖中华绒螯蟹是让农民增加收入的较好的办法,3号田的亩产值可以达到1号旱田的两倍,达到8294.71元/667m2。将2019年全场各个品种产量归总,总计鱼产量为44.78万kg;水稻总产量286552kg,中华绒螯蟹总产量5078.5kg。水产品产量和水稻产量的比值为1:1.43。俗称“1斤鱼:1.5斤稻”模式。也就是亩产1430斤稻,耦合集约水产养殖系统产鱼亩产1000斤。鱼塘面积和稻田面积比是290:776,即养殖面积占27%左右。本研究的创新点是将传统的稻渔综合种养进行突破提升,在水循环、精养鱼塘系统营养物质去除、稻蟹共生系统营养物质吸收、稻渔综合种养水稻生长规律、稻蟹共生模式下中华绒螯蟹成熟群体生殖特征与条件状况方面进行了研究总结,归纳出宁夏地区的生产规律,从而对来年的生产科研进行指导,对宁夏地区的稻渔综合种养推广做出一定的贡献。精养鱼塘中营养物质的排出能够减缓水体老化和富营养化,养殖尾水灌溉进稻田使得秧苗更加粗壮同时又净化了水体,循环用的生态沟渠缓冲了养殖尾水营养物质的高浓度,中华绒螯蟹在西北地区特殊的养殖气候与养殖地位对于中华绒螯蟹的生殖特征条件影响。在夯实基础的条件下我们对精养鱼塘水质调控、稻田生态功能、水稻减少施肥、中华绒螯蟹较少投喂进行了创新,在宁夏回族自治区这个西北地区做一个先行者、开拓者。在创新的基础上我们加大科学研究,将基础研究做踏实,在基础水化学的测定、水稻基本生长指标的测定、中华绒螯蟹基础生物学指标的测定,水循环效率等上下了很大的功夫,初步揭示该复合系统的耦合和循环机制。

杨玲霞[10](2020)在《低洼盐碱地稻渔共作效应研究》文中指出稻渔共作是将水稻种植与水产养殖相结合,实现稻、渔互利共生的绿色循环农业模式,是盐碱地改良利用的方式之一。目前国内外关于稻渔共作的试验比较研究主要集中在常见壤土上水稻及养殖生物的生长及繁殖产量的性状、养殖水体的理化性状及种养技术方面,而对于低洼盐碱地区稻渔共作条件下水稻的生理发育特性、养分特征等方面的深入研究鲜少。本研究旨在进一步探索低洼盐碱地区稻渔共作的实际效应,进一步阐明低洼盐碱地区稻渔共作对水稻生长的直接影响,以期为低洼盐碱地区水稻安全优质高产栽培及盐碱地的改良利用推广提供理论依据。本试验于2018年和2019年分别在宁夏引黄灌区贺兰县常信乡兰丰村和银川市西夏区军华种植农民专业合作社种植基地进行,从稻渔共作模式与常规稻作模式下盐碱地区水稻的生长发育、光合、生理特性、养分特征、产量品质、土壤特性、生态效应几方面以及对两种生态系统的能量流、物质流、价值流进行比较研究。结果表明:1、低洼盐碱地区稻渔共作有利于水稻的生长发育。相较于常规稻作,在水稻全生育期内,水稻的株高、干物重均有不同程度的明显增加,分别增加1.77%~6.76%、1.86%~21.48%,共作水稻功能叶的叶面积在孕穗期和灌浆期均大于常规稻作。2、低洼盐碱地区稻渔共作对各生育时期水稻的生理特性产生一定影响。1)共作条件下,水稻的光合能力有一定程度的明显提升,表现为在水稻苗期-齐穗期,共作条件下水稻叶片的主要光合能力指标(净光合速率Pn、气孔导度Gs、胞间CO2浓度Ci、蒸腾速率Tr)及SPAD值多数显着高于常规稻作,分别增加 0.82%~12.73%、2.16%~12.51%、1.32%~45.42%、1.72%~11.76%、3.43%~12.88%,叶片的荧光参数值(F0、Fm、Fv/Fm、Fv/F0、PI)均高于常规稻作,但差异不显着;2)稻渔共作条件增强了低洼盐碱地区水稻的抗逆性,使得水稻叶片的渗透调节保护物质、抗氧化保护酶活性发生变化,表现为共作水稻叶片的SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)活性、可溶性糖含量较常规稻作在苗期-齐穗期有不同程度的显着升高,分别提高了 5.09%~39.14%、4.55%~37.78%、6.59%~31.95%、1.43%~10.70%,叶片的 Pro(脯氨酸)含量、MDA(丙二醛)含量较常规稻作分别降低6.95%~32.56%、2.04%~24.84%。3、稻渔共作有利于促进水稻对养分的吸收。在拔节-乳熟期,共作水稻植株地上部的N、P、K累积吸收量多数均显着高于常规稻作,分别增加了 57.51%~80.83%、41.16%~55.26%、8.5%~25.02%。4、低洼盐碱地区稻渔共作模式有利于土壤环境的改善。与常规稻作相比,稻渔共作降低了盐碱土壤的pH,显着提高了各生育阶段土壤的有机质、全氮、全磷、全钾、氨氮、有效磷的平均含量。共作水稻土壤的pH较常规稻作降低了 0.47%~2.63%,土壤的有机质、全氮、全磷、全钾、氨氮、有效磷含量分别提高了 8.14%~15.42%、3.31%~10.47%、1.90%~16.34%、3.65%~17.83%、5.19%~21.10%、2.39%~14.76%。5、低洼盐碱地区稻渔共作有利于稻谷产量的增加和稻米品质的改善。1)稻渔共作水稻的穗数与千粒重显着高于常规稻作,分别提高了 14.36%~16.72%、3.78%~6.21%,穗粒数与常规稻作相比无明显差异;2)共作模式下,水稻各生育时期的株高、干物重、光合参数Pn、Gs等与水稻产量均呈正相关关系,且多数与产量呈显着或极显着关系;3)共作水稻的碾磨品质、外观品质、营养品质、食味品质、与蒸煮食味品质有关的物理特性较常规稻作相比有不同程度的改善,稻渔共作水稻的糙米率、精米率、整精米率、蛋白质含量、赖氨酸含量、食味值、胶稠度较常规稻作分别显着提高了 1.30%~2.91%、3.12%~3.55%、3.52%~4.69%、10.14%~14.09%、6.25%~16.86%、5.29%~11.24%、2.42%~4.78%,垩白度、垩白粒率、直链淀粉含量较常规稻作分别降低了 9.32%~16.14%、8.94%~16.14%、3.31%~3.69%。6、低洼盐碱地稻渔共作系统生产力水平有所提升,生态效应较好。共作水稻较常规稻作相比,其能流、物流、价值流产投比均有所增加,经济利润增加了 34.85%~61.94%,生产力水平较高,同时减少了系统中的化肥农药施用。

二、水稻套养鱼蟹综合高产技术试验与探索(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、水稻套养鱼蟹综合高产技术试验与探索(论文提纲范文)

(1)中国稻鱼综合种养的发展与展望(论文提纲范文)

1 稻鱼综合种养原理及关键技术
    1.1 稻鱼综合种养原理
    1.2 稻鱼综合种养关键技术
        1.2.1 田间工程技术
        1.2.2 高效栽培技术
        1.2.3 水质调控技术
        1.2.4 生态防控技术
        1.2.5 协同施肥技术
        1.2.6 配套捕捞关键技术
        1.2.7 精准管控技术
        1.2.8 质量评价技术
2 稻鱼综合种养主要模式
    2.1 稻-鲤种养模式
    2.2 稻-鳅种养模式
3 稻鱼综合种养的贡献
    3.1 经济贡献
    3.2 社会贡献
        3.2.1 增加水产品产量和丰富水产品品种
        3.2.2 有助于解决土地“非粮化”问题
        3.2.3 在产业扶贫上成效显着
        3.2.4 稻鱼综合种养模式成为休闲农业的重要内容
    3.3 生态贡献
        3.3.1 提高土壤生产力
        1)改善环境及微生物群落结构。
        2)促进物质间的内在循环。
        3)降低农业面源污染。
        3.3.2 有效防控稻田病、虫、草害
        3.3.3 改善水体及土壤理化性质
        1)改善水环境质量。
        2)增加共生系统养分。
        3)促进生物种间的互利关系。
        4)改善土壤物理化学性质。
4 稻鱼综合种养存在的主要问题
    4.1 基础理论和关键技术研究不足
    4.2 规模化和产业化水平较低
    4.3 稻鱼品牌化建设不足
    4.4 稻鱼综合种养从业人员专业素质有待提高
5 稻鱼综合种养未来发展建议
    5.1 深入开展基础理论研究
    5.2 加强技术研发、创新与普及
    5.3 推进稻鱼综合种养的规模化和产业化水平
    5.4 加强稻鱼品牌建设
    5.5 加快培育新型经营主体

(2)宁夏稻渔模式水肥调控、放蟹密度和饲料投喂量对水稻及鱼蟹产量和品质的影响(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究进展
        1.2.1 基于稻渔共作模式的水稻及鱼蟹产量和品质研究
        1.2.2 基于稻渔共作模式的水稻光合作用的研究进展
        1.2.3 基于稻渔共作模式的稻田土壤理化性质变化的研究进展
        1.2.4 基于稻渔共作模式的沼肥对水稻和鱼蟹影响的研究进展
        1.2.5 基于稻渔共作模式的节水灌溉应用研究进展
    1.3 研究目标、研究内容和技术路线
        1.3.1 研究目标
        1.3.2 研究内容
        1.3.3 技术路线
第二章 稻蟹模式的水层深度、追肥量、放蟹密度和饲料投喂量最优组合试验研究
    2.1 引言
    2.2 材料与方法
        2.2.1 试验区概况
        2.2.2 试验设计
        2.2.3 试验材料与实施
        2.2.4 试验观测项目及观测方法
    2.3 结果分析
        2.3.1 不同处理对水稻株高的影响
        2.3.2 不同处理对水稻生理指标的影响
        2.3.3 不同处理对水稻产量指标的影响
        2.3.4 不同处理对水稻品质指标的影响
        2.3.5 不同处理对稻田蟹产量的影响
        2.3.6 不同处理对河蟹品质的影响
        2.3.7 不同处理对土壤理化性质的影响
        2.3.8 不同处理对水稻水分利用效率的影响
        2.3.9 不同水层深度下稻田土壤含水率变化分析
    2.4 结论
第三章 稻蟹模式的水层深度和氮肥追施量对水稻与河蟹生长、产量及品质的影响
    3.1 引言
    3.2 材料与方法
        3.2.1 试验区概况
        3.2.2 试验设计
        3.2.3 试验材料与实施
        3.2.4 观测项目及方法
    3.3 结果分析
        3.3.1 不同处理对水稻株高影响
        3.3.2 不同处理对水稻光合指标的影响
        3.3.3 不同处理对水稻产量及其构成因素的影响
        3.3.4 不同处理对水稻品质的影响
        3.3.5 不同处理对稻田蟹产量构成因素的影响
        3.3.6 不同处理对稻田蟹品质的影响
        3.3.7 不同水层深度下的水稻土壤含水率对比分析
    3.4 结论
第四章 “稻-沼-鱼”模式对水稻和草鱼生长、产量及品质的影响
    4.1 引言
    4.2 材料与方法
        4.2.1 试验设计
        4.2.2 试验实施
        4.2.3 样品采集与处理
        4.2.4 观测项目及方法
    4.3 结果分析
        4.3.1 草鱼生长与形体指标分析
        4.3.2 鱼肉一般营养成分与矿物元素含量分析
        4.3.3 鱼肉氨基酸组成及含量分析
        4.3.4 鱼肉氨基酸营养价值评价结果
        4.3.5 不同处理对水稻需水量-产量-品质与水分利用效率影响
    4.4 讨论
        4.4.1 草鱼生长性能和形体指标讨论
        4.4.2 鱼肉一般营养成分及部分矿物元素讨论
        4.4.3 鱼肉氨基酸组成及含量讨论
        4.4.4 鱼肉氨基酸营养价值评价讨论
    4.5 结论
第五章 “稻-沼-蟹”模式对河蟹生长、产量及品质的影响
    5.1 引言
    5.2 材料与方法
        5.2.1 试验设计
        5.2.2 试验实施
        5.2.3 样品采集与制备
    5.3 样品测定
        5.3.1 生长与形体指标的测定
    5.4 结果分析
        5.4.1 生长与形体指标分析
        5.4.2 一般营养成分与部分矿物元素含量分析
        5.4.3 氨基酸组成及含量分析
        5.4.4 氨基酸营养价值评价结果
    5.5 讨论
        5.5.1 稻田蟹生长性能和形体指标讨论
        5.5.2 稻田蟹一般营养成分及部分矿物元素讨论
        5.5.3 氨基酸组成及含量讨论
        5.5.4 氨基酸营养价值评价讨论
    5.6 结论
第六章 结论与展望
    6.1 结论
        6.1.1 稻蟹模式的水层深度、追肥量、放蟹密度及饲料投喂量最优组合试验研究
        6.1.2 稻蟹模式的水层深度和氮肥追施量对水稻与河蟹生长、产量及品质的影响
        6.1.3 “稻-沼-鱼”模式对水稻和草鱼生长、产量及品质的影响
        6.1.4 “稻-沼-蟹”模式对河蟹生长、产量和品质的影响
    6.2 创新点
    6.3 展望
参考文献
附录
致谢
个人简介

(3)基于Android的稻田综合种养决策支持系统研发(论文提纲范文)

摘要
Abstract
第一章 绪论
    1 研究背景与意义
    2 国内外研究进展
        2.1 稻田综合种养技术研究进展
        2.2 决策支持系统研究进展
        2.3 Android端手机APP研究进展
    3 研究内容与方法
    4 技术路线
    参考文献
第二章 系统分析与设计
    0 前言
    1 系统可行性分析
        1.1 技术可行性
        1.2 经济可行性
        1.3 社会可行性
    2 系统需求分析
        2.1 系统功能性需求分析
        2.2 系统非功能性需求分析
    3 系统总体设计
        3.1 系统设计原则
        3.2 系统架构设计
        3.3 系统设计目标
    4 系统关键技术
        4.1 Material Design界面设计
        4.2 Android四大组件
        4.3 数据持久化技术
        4.4 Volley框架
        4.5 Maven工具
        4.6 MySQL数据库
        4.7 三层架构
    5 小结与讨论
        5.1 小结
        5.2 讨论
    参考文献
第三章 数据库、知识库、模型库的研发
    0 前言
    1 数据库的研发
        1.1 数据库建表
        1.2 数据存储
    2 知识库的研发
        2.1 稻田综合种养模式知识库
        2.2 水稻品种知识库
        2.3 病虫害防治知识库
    3 模型库的研发
        3.1 水稻基本苗计算决策模型的构建
        3.2 水稻精确施肥决策模型的构建
        3.3 饲料投喂决策模型的构建
        3.4 适宜水质决策模型的构建
        3.5 其它决策模型的构建
    4 小结与讨论
        4.1 小结
        4.2 讨论
    参考文献
第四章 Android端手机APP功能设计与实现
    0 前言
    1 系统开发方法与功能
        1.1 系统开发环境
        1.2 页面设计常用组件
    2 系统程序实现与功能应用
        2.1 注册
        2.2 登录
        2.3 页面功能程序实现
        2.4 功能应用
    3 小结与讨论
        3.1 小结
        3.2 讨论
    参考文献
第五章 结论与讨论
    1 结论
    2 创新点
    3 讨论
攻读学位期间取得的研究成果
致谢

(4)中国海水稻背后的故事(论文提纲范文)

大海馈赠给人类的一份神秘礼物
一个稻作界的哥德巴赫猜想
到沙漠王国去种水稻
永恒的课题

(5)传统农业回顾与稻渔产业发展思考(论文提纲范文)

1 人类文明史的主体是农耕文明史
2 对工业化“现代农业”的再思考
3 重要农业文化遗产概念的提出与实践
4 稻鱼共生系统与中国稻渔共生产业的发展
5 我国稻渔共生产业发展面临的一些挑战与思考
6 结语

(6)稻渔综合种养的科学范式(论文提纲范文)

1 传统稻渔综合种养模式
    1.1 稻田养鱼
        1.1.1 稻鱼系统水稻生产效益情况
        1.1.2 稻鱼系统稻田基础设施及种植情况
        1.1.3 稻鱼系统营养利用情况
        1.1.4 稻鱼系统生态系统研究
        1.1.5 稻鱼系统农药使用和病虫害控制情况
        1.1.6 稻鱼系统温室气体排放研究
    1.2 稻蟹共作系统研究
        1.2.1 稻蟹共作中水稻和河蟹的生长
        1.2.2 稻蟹共作中土壤理化变化
        1.2.3 稻蟹共作水化学
        1.2.4 稻蟹共作生态系统
        1.2.5 稻蟹共作草害和虫害
    1.3 稻虾共作系统生态研究
    1.4 系统的整合
2 稻田-池塘复合生态养殖模式
3 稻渔共生-池塘复合生态养殖系统

(7)稻田养鱼与氮密互作对土壤肥力、水稻产量及其养分累积的影响(论文提纲范文)

0 引言
1 材料与方法
    1.1 试验时间、地点
    1.2 试验材料
        1.2.1 优质杂交中稻品种
        1.2.2 放养鱼苗
    1.3 试验方法
        1.3.1 试验设计
        1.3.2 考查项目
        1.3.3 测定方法
        1.3.4 统计分析
2 结果与分析
    2.1 稻田养鱼对土壤养分的影响
    2.2 稻田养鱼对水稻产量的影响
    2.3 稻田养鱼对水稻氮、磷、钾累积的影响
3 讨论
    3.1 关于稻田养鱼对土壤养分的影响
    3.2 关于养鱼稻田的栽秧密度
    3.3 关于养鱼稻田的氮磷钾积累量与比例

(8)新中国稻田渔业发展的经验启示(论文提纲范文)

1 新中国成立后稻田渔业历史分期
2 传统稻田渔业发展时期
    2.1 传统稻田渔业快速扩展阶段
    2.2 传统稻田渔业曲折徘徊阶段
3 现代稻田渔业科学发展时期
    3.1 稻田渔业快速扩张阶段
        3.1.1 规模与生产水平全面提升
        3.1.2 政府与政策强力推动
        3.1.3 理论与技术创新推动
    3.2 稻田渔业适应市场发展阶段
        3.2.1 政府和部门推动
        3.2.2 技术创新推动
        3.2.3 重要农业文化遗产保护带动
    3.3 稻田渔业科学发展经验
        3.3.1 建立利益机制,经济利益与生产成果挂钩
        3.3.2 适应市场需求,调整养殖结构
        3.3.3 建设田间工程,防范自然风险
        3.3.4 依靠科技进步,实现增产增效
        3.3.5 适应工业化、城市化,发展规模经营
4 现代稻田生态渔业建设时期
    4.1 稻田渔业生态化探索
    4.2 稻田渔业的湿地生态功能
        4.2.1 净化空气,调节气候
        4.2.2 治理污水,预防疾病
        4.2.3 蓄水保土,防控洪涝
    4.3 稻田渔业提升生态安全
    4.4 稻田渔业引导绿色健康生活
    4.5 稻田渔业带动生态文化旅游
    4.6 现代稻田生态渔业的发展经验

(9)银川大型稻蟹共生和水产养殖耦合系统水质和稻蟹生长研究(论文提纲范文)

摘要
abstract
第一章 引言
    1.1 稻渔综合种养研究背景
    1.2 稻渔共作系统研究
        1.2.1 稻鱼共生进展研究
        1.2.2 稻蟹共生进展研究
        1.2.3 稻虾共作进展研究
    1.3 精养鱼塘水质研究
    1.4 研究目的和意义
    1.5 创新点
第二章 大型稻蟹共生—水产养殖耦合系统鱼塘水质变化研究
    2.1 材料与方法
        2.1.1 实验条件
        2.1.2 精养鱼塘系统
        2.1.3 养殖鱼塘系统水质检测
    2.2 结果与分析
        2.2.1 精养鱼塘氨氮、磷酸盐和亚硝酸盐的变化规律
        2.2.2 养殖鱼塘系统总进出水口氨氮变化规律
        2.2.3 流水槽氨氮、磷酸盐和亚硝酸盐的变化规律
        2.2.4 精养鱼塘系统中典型鱼塘进出水口悬浮有机物含量变化
    2.3 讨论
第三章 大型稻蟹共生—水产养殖耦合系统稻蟹共生系统水质变化研究
    3.1 材料与方法
        3.1.1 稻蟹共生系统
        3.1.2 循环沟渠系统
        3.1.3 稻蟹共生系统水质检测
        3.1.4 循环沟渠系统水质检测
    3.2 结果与分析
        3.2.1 稻蟹共生系统水质变化规律
        3.2.2 循环沟渠系统水质变化规律
        3.2.3 稻蟹共生稻田环沟悬浮有机物浓度
        3.2.4 稻蟹共生8月生产旺季稻田环沟水质
    3.3 讨论
第四章 大型稻蟹共生—水产养殖耦合系统中水稻生长的研究
    4.1 材料与方法
        4.1.1 实验条件
        4.1.2 实验设计
    4.2 .结果与分析
        4.2.1 各稻田地面上部生物量、秆长、株高、秆基部外径动态变化
        4.2.2 水稻产量与水稻根茎秆构成因子、产量构成因素关系
    4.3 .讨论
        4.3.1 稻蟹共生水稻生长指标的探讨
        4.3.2 .灌溉鱼塘水对水稻的影响
        4.3.3 稻蟹共生中水稻根茎秆、产量构成因子分析
第五章 大型稻蟹共作—水产养殖耦合系统中华绒螯蟹成熟阶段生长生殖特征研究
    5.1 材料与方法
    5.2 结果与分析
        5.2.1 中华绒螯蟹体长的分布变化
        5.2.2 中华绒螯蟹体重的分布变化
        5.2.3 中华绒螯蟹体长和体重的关系
        5.2.4 成熟阶段中华绒螯蟹肝胰腺变化
        5.2.5 成熟阶段中华绒螯蟹条件指数变化
    5.3 讨论
第六章 大型稻蟹共生—水产养殖耦合系统产量分析
    6.1 .材料与方法
    6.2 .结果与分析
    6.3 讨论
第七章 主要结论与展望
    7.1 大型稻蟹共生——水产养殖耦合系统养殖鱼塘水质研究
    7.2 大型稻蟹共生——水产养殖耦合系统稻蟹共生水质研究
    7.3 大型稻蟹共生——水产养殖耦合系统中水稻生长的研究
    7.4 大型稻蟹共生——水产养殖耦合系统中华绒螯蟹成熟阶段生长生殖特征研究
    7.5 大型稻蟹共生——水产养殖耦合系统产量分析研究
    7.6 展望
参考文献
致谢

(10)低洼盐碱地稻渔共作效应研究(论文提纲范文)

摘要
Abstract
缩略词表
第一章 文献综述
    1.1 研究背景
    1.2 稻渔共作内涵及发展历程
    1.3 国内外研究进展
    1.4 研究目的及意义
第二章 试验设计与研究方法
    2.1 研究目标、研究内容及技术路线
    2.2 试验地概况
    2.3 试验设计
    2.4 测定项目及方法
    2.5 数据统计与分析方法
第三章 结果与分析
    3.1 稻渔共作对水稻生长发育的影响
    3.2 稻渔共作对水稻生理特性的影响
    3.3 稻渔共作对水稻植株养分特征的影响
    3.4 稻渔共作对稻田土壤特性的影响
    3.5 稻渔共作对水稻产量品质的影响
    3.6 稻渔共作系统能量流、物质流、价值流分析
    3.7 稻渔共作的生态效应
第四章 讨论
    4.1 稻渔共作对水稻生长发育的影响
    4.2 稻渔共作对水稻光合、生理特性的影响
    4.3 稻渔共作对水稻养分特征的影响
    4.4 稻渔共作对稻田土壤特性的影响
    4.5 稻渔共作对水稻产量品质的影响
    4.6 稻渔共作系统能量流、物质流、价值流分析
    4.7 稻渔共作的生态效应
第五章 结论与展望
    5.1 主要结论
    5.2 展望
参考文献
致谢
个人简介

四、水稻套养鱼蟹综合高产技术试验与探索(论文参考文献)

  • [1]中国稻鱼综合种养的发展与展望[J]. 徐跑. 大连海洋大学学报, 2021(05)
  • [2]宁夏稻渔模式水肥调控、放蟹密度和饲料投喂量对水稻及鱼蟹产量和品质的影响[D]. 曲兆凯. 宁夏大学, 2021
  • [3]基于Android的稻田综合种养决策支持系统研发[D]. 陈泽. 扬州大学, 2021
  • [4]中国海水稻背后的故事[J]. 陈启文. 北京文学(精彩阅读), 2021(01)
  • [5]传统农业回顾与稻渔产业发展思考[J]. 唐建军,胡亮亮,陈欣. 农业现代化研究, 2020(05)
  • [6]稻渔综合种养的科学范式[J]. 管卫兵,刘凯,石伟,宣富君,王为东. 生态学报, 2020(16)
  • [7]稻田养鱼与氮密互作对土壤肥力、水稻产量及其养分累积的影响[J]. 徐富贤,周兴兵,张林,蒋鹏,刘茂,郭晓艺,朱永川,熊洪. 中国农学通报, 2020(15)
  • [8]新中国稻田渔业发展的经验启示[J]. 李荣福,寇祥明,王守红,孙龙生,王曙光. 渔业信息与战略, 2020(02)
  • [9]银川大型稻蟹共生和水产养殖耦合系统水质和稻蟹生长研究[D]. 沈玺钦. 上海海洋大学, 2020(02)
  • [10]低洼盐碱地稻渔共作效应研究[D]. 杨玲霞. 宁夏大学, 2020(03)

标签:;  ;  ;  ;  ;  

水稻养鱼蟹综合高产技术试验与探索
下载Doc文档

猜你喜欢