一、东天山铁矿床类型、地质特征成矿规律与找矿方向(论文文献综述)
夏冬[1](2020)在《东天山石炭-三叠纪构造-岩浆演化与成矿的关系 ——以阿奇山铅锌(铜)矿为例》文中认为东天山石炭-三叠纪构造-岩浆演化与成矿的关系的认识一定程度上缺乏系统性、全面性的研究方法及相对统一的综合性结论。本文以透岩浆流体成矿理论视角,系统地收集、整理东天山及邻区已发表的锆石U-Pb单点年龄大数据及7类主要矿产时空结构规律的研究成果,总结了主要构造-岩浆演化序列、成矿规律及构造-岩浆演化与流体耦合成矿机理,并探讨了地球动力学机制。阿奇山铅锌(铜)矿床在东天山石炭-三叠纪构造-岩浆演化序列及成矿特征方面具有一定代表性,但其成因、控矿因素等的研究尚薄弱,为此开展了野外地质学,小东山火山机构岩石组合、构造控矿、流体运移特征及年代学等工作。我国地表找矿存在找矿难、找矿慢的问题突出,找矿理论创新是解决该问题的途径之一。本文主要取得了以下创新性认识:(1)东天山经历了晚奥陶世-早泥盆世(俯冲)→早石炭纪(碰撞+准噶尔亚幔柱?)→晚石炭纪(板片断离-岩石圈拆沉+准噶尔亚幔柱?)→早-中二叠世(塔里木亚幔柱)→晚二叠世-早中三叠世(板内演化)的地球动力学机制。(2)东天山绝大部分矿产的主成矿期处于石炭-三叠纪构造-岩浆活动间歇期,耦合着大量流体作用,具有岩浆期后成矿特点。与板块构造有关的早石炭世斑岩型铜矿、火山岩型铁矿、晚二叠-早三叠世韧性剪切带型金矿、早-中三叠世斑岩型钼钨矿为板块熔融产生的透岩浆流体成矿系统中熔体与流体发生耦合或解耦的产物;板片拆离-岩石圈拆沉作用触发的深部含矿流体向上运移与晚石炭世火山岩型铜多金属矿、火山-次火山热液型铜多金属矿床、早二叠世火山岩型铁矿、火山热液型或火山岩型银多金属矿成矿密切相关;塔里木二叠纪地幔柱与早-中二叠晚期基性-超基性岩型铜镍矿具有成生关系。(3)阿奇山铅锌(铜)矿床成矿分为早期硅酸岩热液和晚期碳酸盐流体成矿阶段。花岗斑岩对成矿的主要贡献:岩体自身及其岩浆成矿系统解耦有关的透岩浆流体形成的早期矽卡岩化带对后期小东山火山机构有关的含矿流体的遮挡作用,仅提供了部分热及矿质,正长斑岩等次火山岩有关的含矿流体以非顺层、高角度呈发散性产于断裂、破碎带及岩石微裂隙等构造有利部位充填-交代形成主要富矿体。主成矿期约束在292.0~320.0±1.6Ma,成矿流体具低温-中盐度,硫同位素具幔源、火山热液特征,成矿期构造背景处于挤压向拉张转换期,地球动力学机制主要为岩石圈拆沉。(4)含矿火山流体的充填交代为主要成矿作用,成因为火山热液型铅锌(铜)矿床,并建立了成矿模式。针对当前我国找矿勘查客观条件下存在的找矿难、找矿慢问题,适时提出中观“热岩-枝找矿理论”,并阐述了运用该理论发现新矿床的过程。
宋哲[2](2020)在《东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究》文中提出火山岩型铁矿作为我国主要的铁矿床类型之一,具有规模大、品位高的特征,有较高开采价值。陆相火山岩型铁矿主要集中于长江中下游成矿带的宁芜-庐枞地区,海相火山岩型铁矿主要分布于新疆的西天山、东天山、阿尔泰等地。西天山阿吾拉勒成矿带的海相火山岩型铁矿不仅近年来找矿取得巨大突破,而且研究工作深入,建立了包括岩浆型(塔尔塔格铁矿)、热液型(智博、查岗诺尔、松湖、备战等铁矿)、热液-沉积型(式可布台铁矿)3种铁矿化类型的矿床成矿系列和成矿模式。东天山与西天山类似,在阿齐山-雅满苏成矿带中也发现了雅满苏、沙泉子、黑尖山、红云滩、赤龙峰等一系列具有经济价值的海相火山岩型铁矿,但是对成矿过程以及区域成矿规律的研究程度较低,影响了对进一步找矿潜力的评估。因此本文以新疆东天山阿齐山-雅满苏海相火山岩型铁矿带中黑尖山铁矿床、雅满苏铁矿床、赤龙峰铁矿床分别作为矿浆型铁矿化、岩浆热液交代-充填铁矿化、热液-沉积型铁矿化的典型代表,通过描述每个矿化类型典型矿床的含矿构造,矿体和矿石的结构构造和矿物组合以及围岩蚀变特征,将东天山阿齐山-雅满苏成矿带海相火山岩型铁矿从成矿作用、构造背景、赋矿围岩、蚀变类型、矿物组合、矿体特征、矿石矿物地球化学特征等方面进行全面系统的总结,探讨了成矿机理,建立了区域成矿模式。在黑尖山铁矿床矿体围岩安山质角砾熔岩中发现五种富铁团块(钠长石-磁铁矿型、钠长石-钾长石-磁铁矿型、钾长石-磁铁矿型、绿帘石-磁铁矿型和石英-磁铁矿型),结合富铁团块中磁铁矿电子探针显微分析,得出五种富铁团块分别代表岩浆-水热系统的不同演化阶段:依次为钠长石磁铁矿型富铁团块为岩浆活动产物;钠长石钾长石磁铁矿型和钾长石磁铁矿型富铁团块为岩浆-热液过渡的产物;而绿帘石磁铁矿型和石英磁铁矿型富铁团块则可能为热液作用的产物。且绿帘石磁铁矿型和石英磁铁矿型富铁团块的磁铁矿成分特征与矿石矿物中磁铁矿的成分特征最为相似,所以绿帘石磁铁矿型和石英磁铁矿型富铁团块是残余富铁矿浆结晶且受热液完全交代产物。建立了黑尖山铁矿床富铁团块的形成模型:是由富水且氧化的富铁矿浆在寄主角砾状安山质熔岩的裂缝中结晶并释放出气体,形成囊状和杏仁状的富铁团块。雅满苏铁矿床为岩浆热液交代-充填型铁矿床,对矿床含矿玄武岩进行全岩微量元素和Sr-Nd同位素分析,结果表明雅满苏玄武岩样品均属于弧岩浆范畴,形成于弧后盆地环境,同时玄武岩在形成过程中受到了洋壳物质的交代。利用磁铁矿单矿物Fe,O同位素和原位主量元素和微量元素对雅满苏铁矿和同处一个成矿带的多头山铁矿和骆驼峰铁矿研究,根据主要矿物形成的先后顺序将岩浆热液交代-充填铁矿化矿石中磁铁矿分为三种,根据不同类型矿石中磁铁矿组分和铁同位素分馏特征不同,表明成矿环境有两种:岩浆热液环境和后期热液环境。因此阿齐山-雅满苏火山岩型铁矿带热液型铁矿床具有岩浆作用到热液作用的连续成矿过程。赤龙峰铁矿床为热液-沉积型铁矿床,对该矿床开展了主要矿石矿物赤铁矿的单矿物Fe,O同位素分析和原位主量元素和微量元素测试以及与矿石中主要矿物重晶石S同位素的分析,提出重晶石和赤铁矿均为为海相环境。且成矿物质的富集与热液蚀变无直接联系,但矿床的主要的成分硅、铁以化学沉积物的形式析出,具有热液特征。表明硅、铁是来源于与海底火山作用有关的岩浆热液流体。综合新疆东天山阿齐山-雅满苏海相火山岩型铁矿带中三种典型铁矿化类型,认为这三种铁矿化类型反映了东天山阿齐山-雅满苏成矿带中海相火山岩型铁矿的一个较为完整的火山活动及成矿的过程,具体可分为:1)母岩浆形成阶段(成矿母岩浆形成阶段);2)富铁矿浆分离结晶阶段(黑尖山铁矿床中富铁团块形成阶段);3)岩浆热液成矿阶段(区域绝大多数与雅满苏铁矿相似的海相火山岩型铁矿形成阶段);4)热液-沉积成矿阶段(赤龙峰铁矿形成阶段)。因此东天山阿齐山-雅满苏海相火山岩型铁矿成矿带的不同矿化类型是基于时间变化(火山活动早晚、岩浆演化的不同阶段)和空间差异(以火山机构为载体,成矿位置处于火山口的近端至远端的不同)所造成的,代表的是一个连续,具有密切联系的成矿过程。
臧忠江[3](2020)在《西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测》文中提出研究区位于西昆仑和西南天山两个构造带的结合部,两个研究区带分列于其南北两侧,南侧的玛尔坎苏矿带呈近东西向沿着帕米尔北东缘展布,隶属于西昆仑构造带;北侧的吉根成矿区呈北北东向展布,隶属于西南天山构造带。近年来,在新疆维吾尔自治区克孜勒苏柯尔克孜自治州(简称克州)不断发现晚古生代沉积型锰矿床(点),玛尔坎苏一带有奥尔托喀讷什、玛尔坎土和穆呼等锰矿床,已成为新疆最重要的锰矿带。吉根地区的博索果嫩套、铁克列克等锰矿点呈多点带状分布,找矿潜力较大。但是,由于这些矿带发现时间不长,基础地质和矿床地质的研究程度较低,吉根地区研究程度基本属于空白。因此,开展研究区晚古生代岩相古地理和沉积环境研究,开展研究区容矿地层的对比以及构造格架的研究,探讨锰矿的富集机制、成矿演化及成矿规律,对于新疆克州及其周边国家锰矿资源评价与富锰矿找矿勘查具有重要指导意义。西昆仑与西南天山结合部沉积型锰矿床,锰矿体常常以层状产出,严格受一定时代的含锰地层(下泥盆统和上石炭统)控制,含锰岩系多样,有以硅质岩为主的,还有碳酸盐岩型居多的。锰矿床形成后受后期构造改造的影响,锰矿体形态、产状发生明显变化。玛尔坎苏锰矿带内火山—沉积型锰矿床(锰质内源外成)伴有块状硫化物矿化(铜锌)。玛尔坎苏锰矿带锰矿床主要产于上石炭统喀拉阿特河组(C2k),按其岩性分为三个岩性段:(1)生物碎屑灰岩,(2)灰绿色岩屑砂岩,(3)泥质灰岩夹薄层状灰岩,是区内最主要的沉积型锰矿赋矿层位。吉根一带锰矿床(点)产于下泥盆统萨瓦亚尔顿组(D1s),该组为一套浅变质复理石建造,分为四个岩性段:(1)底部粗碎屑岩段,(2)下部浅变质泥岩—硅质岩—细碎屑岩段,(3)中部碳酸盐岩段,(4)上部浅变质硅质岩—泥岩—细碎屑岩夹碳酸盐岩段。在下部硅质岩和中部碳酸盐岩中均发现锰矿体。玛尔坎苏锰矿带奥尔托喀讷什锰矿床Fe/Ti比值平均为29.79;锰矿石Al/(Al+Fe+Mn)比值为0.14~0.19(平均为0.165),围岩的在0.29~0.74之间,具有热水沉积特征。矿石的Y/Ho比值平均为25.69,与深海热水流体的基本一致。含锰岩系下伏的早石炭世玄武岩锰含量在1000×10-6~1500×10-6之间,锰的背景值较高,说明锰源与深部来源有关。矿石REE总量平均为99.03×10-6,明显偏低,表明成矿过程中有热液活动。碳酸锰矿石及其顶、底板灰岩LREE/HREE比值平均为3.25。锰矿石δCe值平均为1.15;围岩δCe值平均为0.83。这可能是早石炭世地质活动频繁,海底出现基性火山岩喷发等海底火山作用引起的。矿石δEu值平均为0.95,围岩δEu值平均为0.89。均呈微弱的Eu负异常。锰矿床矿体顶、底板围岩δ13C在0.26‰~-2.73‰之间,与海相碳酸盐δ13C值相近。碳酸锰矿石δ13C在-9.47‰~-21.67‰之间,变化范围较大,说明锰成矿中存在有机物降解过程,造成碳同位素分馏。δ13CPDB值偏负,推断锰矿石的形成是有机质参与造成的。锰矿石δ18O值在-5.2‰~-11.45之间。计算的围岩温度集中在68.1~78.2℃之间;锰矿石温度范围在42.7~84.1℃之间,也说明锰矿床的形成具有热水沉积特征。吉根一带锰矿床Fe/Ti值平均为24.60;Al/(Al+Fe+Mn)值平均为0.24,REE总量平均为57.99ppm。锰矿石及其顶、底板围岩LREE/HREE比值平均为9.04。锰矿石δCe值平均为1.17,围岩δCe值平均为1.02,说明锰在沉积成岩—成矿过程中受到海底火山作用影响。矿石δEu值平均为1.09,围岩δEu值平均为0.96。显示为弱的Eu正异常,反映出岩/矿石沉淀时有海底热水作用参与。玛尔坎苏锰矿带自早石炭世起,在持续拉张的伸展环境下形成下石炭统乌鲁阿特组巨厚的基性—中性火山岩。至晚石炭世火山活动基本结束,构造沉积盆地内发育一套海相碳酸盐岩组合,古地理环境属于浅海沉积盆地。锰的成矿作用分为沉积成岩期、热液改造期和表生氧化期。成矿模式为:由火山口(火山喷溢VMS)、近源(火山口)以火山—沉积为主导,到远源(火山口两侧)以化学沉积为主的锰多金属矿成矿作用演变过程。西南天山吉根周边下泥盆统萨瓦亚尔顿组下部和底部对应于河口三角洲沉积环境;中部代表较深水的浅海沉积环境;而上部则是浅海沉积环境。锰矿床的形成经历了沉积成岩期、变质改造期和表生氧化期三个阶段,含矿岩系具有热水沉积特点,锰质来源与其关系密切,锰矿床属于热水沉积—变质成因。对研究区及其外围开展以构造要素及其对锰矿体制约(改造)为目的的野外调查研究,构建了研究区的构造格架。玛尔坎苏锰矿带穆呼—玛尔坎土一带的构造轮廓整体为一个近东西向的玛尔坎苏河复背斜,它自北向南包含玛尔坎苏河背斜—玛尔坎土倒转向斜—坦迭尔倒转背斜—玛尔坎阿塔乔库倒转背斜等次级褶皱,倒转褶皱轴面均向南倾斜,反映自南向北的推覆动力。玛尔坎土向斜是研究区主要赋矿构造。在穆呼—玛尔坎土以西,厘定了12线的石炭系构造形态,确立了坦迭尔背斜核部,其南翼向东延伸,划分出南部新的含锰岩带,拓宽了找锰矿范围。在吉根锰矿远景区确定了泥盆系构成一系列NNE向—SN向的褶皱构造,中部的艾提克复式背斜向东、西两翼均有托格买提组下段碳酸盐岩的重复出现,西侧更有托格买提组上段碎屑岩的分布,反映出一个中间老两侧新的背斜构造格局。东部与上—顶志留系塔尔特库里组接触的是下泥盆统萨瓦亚尔顿组偏上层位。东部一系列以托格买提组下段为核部的向斜构造,识别出两个倒转的向斜构造,对于找锰矿是最为有利的。西昆仑和西南天山结合部沉积型锰矿床具有以下特点:(1)与海相火山作用有关的锰成矿作用表现出“内源外成”特点。成矿物质主要来自海底火山喷发所引起的深源富锰含烃热液(水)喷流沉积。(2)都有热水溶液参与成矿的迹象,玛尔坎苏锰矿带属于近火山—沉积建造,含锰建造中伴有火山岩及火山碎屑岩;吉根一带则属于远离火山—沉积建造,含锰建造以陆源碎屑岩类为主,偶见少量火山物质,但是地球化学特征显示热水沉积特层。(3)容矿岩石均有硅酸盐岩和碳酸盐岩。岩石类型富含炭质,硅质岩中出现复杂的微量元素组合。吉根锰矿远景区北部博索果嫩套是硅质岩砂页岩容矿,南部克尔克昆果依山则是碳酸盐岩容矿。玛尔坎苏锰矿带坦迭尔锰矿点产于火山岩建造顶部的凝灰岩中。(4)锰矿石类型均为富锰矿石,但是两个成矿带矿石的矿物组合有明显差别。玛尔坎苏锰矿带以原生碳酸锰矿石为主,少量次生氧化锰矿石。矿石中菱锰矿和钙菱锰矿居多,少量肾硅锰矿和硫锰矿。而吉根锰矿远景区矿石中锰的硅酸盐相占较大比例。(5)锰矿具有成群(带)分布特点,吉根锰矿远景区可能是被动性大陆边缘的岛弧沉积岩带火山弧间洼地—弧后盆地,玛尔坎苏锰矿带为主动性大陆边缘的岛弧火山—沉积岩带,属于浅海较深水洼地。两者均属于复杂的拉张构造环境中生成的海底热水沉积型锰矿床。(6)锰矿体形成后明显受后期构造运动所改造,构造改造是矿体的结构和矿物组成由简单、完整到复杂、破损的变化过程。现存的锰矿体多定位于向斜构造的核部和两翼。(7)锰矿成矿时间均属于晚古生代,玛尔坎苏锰矿带以石炭纪为主,二叠纪次之;吉根地区锰矿的成锰时代为早泥盆世。锰的聚集具有区域同时性。对比玛尔坎苏锰矿带与吉根锰矿远景区的区域地质背景、含锰建造类型、成锰期沉积相和沉积环境,以及探明的富锰矿石资源和构造改造程度等成矿要素表明,前者具备形成大中型富锰矿床的良好条件,其中,长期大量的中基性岩浆喷发以及火山熔岩和凝灰岩与海水的水岩交换提供充足的Mn源,而火山岩建造之上的相对沉积凹陷区域起到很好的聚矿作用,以及充足的生物有机质对矿质的沉淀和固着等尤为重要,因此区域找矿潜力较大;而后者成矿条件较为复杂,在锰源、含锰建造和古地理环境、成矿后构造改造等方面对成锰矿及矿体定位的贡献较小,增大了找矿难度。根据以上研究成果,结合研究区物探、化探和遥感找矿信息,在玛尔坎苏锰矿带划分出3个Ⅰ级找矿靶区和1个Ⅱ级找矿靶区。在吉根锰矿远景区提出3个值得进一步找矿区段:即Ⅰ-1靶区、Ⅰ-2靶区和Ⅱ-1靶区。
李建威,赵新福,邓晓东,谭俊,胡浩,张东阳,李占轲,李欢,荣辉,杨梅珍,曹康,靳晓野,隋吉祥,俎波,昌佳,吴亚飞,文广,赵少瑞[4](2019)在《新中国成立以来中国矿床学研究若干重要进展》文中指出新中国成立70年来,中国的矿产资源勘查取得了一系列重大进展,发现了数百个大型超大型矿床,形成16个重要成矿带.这些找矿重大发现为系统开展矿床成因研究、构建矿床模式、总结区域成矿规律和创新成矿理论提供了重要条件.中国的矿床学研究和发展大致可以划分为三个阶段,分别是新中国成立之初至20世纪70年代末,改革开放初期至20世纪末,以及21世纪之初到现在.论文首先概述了上述三个历史时期中国矿床学发展的特点和主要研究进展.早期的矿床学研究与生产实际紧密结合,重点关注矿床的地质特征和矿床分类.这一时期虽然研究条件落后,但学术思想活跃,提出了一系列创新的学术观点,建立了多个有重要影响的矿床模式,同时开始将成矿实验引入矿床形成机理的探讨.第二个阶段的一个显着特点是各种地球化学理论与方法被广泛应用于矿床学的研究,大大促进了对成矿作用过程和成矿机制的理解,并在分散元素成矿理论和超大型矿床研究方面取得了重大进展和突破,同时将板块构造引入各类矿床成矿环境和时空分布规律的研究.第三个阶段是中国矿床学与世界矿床学全面接轨并实现成矿理论系统创新的时期.这一时期各种先进的实验分析技术有力支撑了矿床成因的研究,深刻揭示了地幔柱活动、克拉通化、克拉通破坏、大陆裂谷作用、多块体拼合、大陆碰撞等重大地质事件与大规模成矿作用的耦合关系,并在大陆碰撞成矿、大面积低温成矿作用等重大科学问题的研究上取得了原创性成果,产生了重要的国际影响.论文概述了16类重要矿床类型的代表性研究进展,重点介绍了大塘坡式锰矿、大冶式铁矿、铜陵狮子山式铜矿、玢岩型铁矿、铁氧化物-铜-金(IOCG)矿床和石英脉型钨矿的成矿模式,分析了若干重大地质事件的成矿效应,总结了元素地球化学、稳定同位素地球化学、同位素年代学、流体包裹体分析、成矿实验、矿田构造等研究方法对推动中国矿床学发展所起的作用.文章最后简要分析了今后中国矿床学研究的发展趋势和重要研究方向,认为深部成矿作用规律、关键金属元素富集机理、非常规矿产资源、重大地质事件与成矿、超大型矿床等是今后矿床学的重点研究内容,提出要创新矿床学研究方法,加强跨学科交叉研究,使中国的矿床学能逐渐引领世界矿床学的研究,服务矿产资源国家重大需求.
刘超[5](2019)在《新疆清白山一带成矿规律与成矿预测》文中进行了进一步梳理研究区处于塔里木地块和中天山地块之间北山裂谷系,一直以来北山裂谷系构造属性及成矿地质特征存在较大争议。但不可否认的是,北山裂谷系地质环境复杂,成矿条件优越,一直以来都是新疆、甘肃乃至内蒙古重要的成矿区带。在新疆境内—北山裂谷系西段,上世纪60年代至2000年之前,区内始终以铁为主要成矿种。2011年以来,在新疆境内—北山裂谷系西段,随着大比例尺化探工作的开展,发现了一批颇具代表性的新矿种,如清白山铅锌矿、清白山东金矿点、聚源钨矿点、大红山铜矿等等,证明该带仍然存在巨大的找矿潜力,因而对该区加强找矿研究,具有十分重要的理论意义和现实意义。论文以新疆哈密磁海-黑山梁一带铜多金属矿预查和新疆维吾尔自治区矿产地质与区域成矿规律综合研究项目为依托,以区域成矿理论为指导,通过野外系统的调查,结合室内综合研究,对研究区的成矿规律进行系统研究,厘定了成矿模式10种。并通过对1:5万化探数据、1:5万航磁数据、1:25万重力数据的重新筛选、处理、成图、分析,以地质背景为基础,总结找矿标志,建立了各类矿种地质-地球物理-地球化学综合找矿模型,并圈定出12处找矿远景区,其中I级找矿远景区3处,II级找矿远景区4处,III级找矿远景区5处。
龙灵利,王京彬,王玉往,邓小华,毛启贵,孙燕,孙志远,张忠义[6](2019)在《东天山古弧盆体系成矿规律与成矿模式》文中研究表明东天山是中亚增生型造山带的重要组成部分,随古亚洲洋的形成、演化和消亡,发育了东天山古生代弧盆体系。基于前人对东天山古生代构造演化与成矿规律的大量研究,针对以往研究相对薄弱的早古生代构造演化与成矿,本文重点论述了以卡拉塔格矿集区为代表的早古生代构造-岩浆-成矿研究新进展,从而进一步探讨了东天山古弧盆体系古生代构造演化与成矿规律。本文将东天山古弧盆体系划分为大南湖-头苏泉成矿带和阿奇山-雅满苏成矿带,又将前者划分为卡拉塔格成矿亚带和小热泉子-土屋成矿亚带;总结出其成矿具有VMS成矿系统与斑岩成矿系统共存、多种矿化类型叠加的特征;区域共发育两次大规模成矿事件,且均与大规模火山-侵入岩浆活动有关,进而构建了东天山古弧盆体系区域成矿模式;并指出东天山古生代弧-盆多方向、多期次的转换是导致该体系内VMS-斑岩型矿床共存、叠加成矿发育的主因。
代俊峰[7](2019)在《新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用》文中指出全球铅锌资源主要来自沉积岩容矿的SEDEX型、MVT型和砂岩型铅锌矿床;但天山地区却发现有许多大型-超大型的矽卡岩型铅锌矿床,显示出巨大的矽卡岩型铅锌成矿潜力,这是天山铅锌成矿的重要特色。这些矽卡岩型铅锌矿床形成于何种地质环境?矿化样式和成矿方式如何?都是颇受关注的科学问题。本文以详实的野外地质调查和室内显微岩相学研究为基础,选取新疆西天山阿尔恰勒和东天山阿奇山矿床为研究对象,开展天山晚古生代矽卡岩型铅锌成矿环境和成矿过程的研究,并建立新疆天山远矽卡岩型和近矽卡岩型两种不同的铅锌矿化模式。同最后,从时空分布、构造活动、容矿地层、岩浆活动和热液成矿等几个方面着手,揭示天山矽卡岩型铅锌矿床的成矿规律、成矿系统物质组成和成矿演化,旨在为天山矽卡岩型铅锌找矿提供科学依据。研究主要取得以下的成果和进展:(1)阿尔恰勒矿床成矿时代为340 Ma;稳定和放射性同位素组成指示成矿物质和流体主要为岩浆来源,部分来自围岩大哈拉军山组。成矿和区域岩浆活动的时空关系表明矿床形成于晚古生代岛弧环境,与南天山洋俯冲过程中在伊犁板块南缘引起的大规模中-酸性岩浆活动有关。阿尔恰勒矿床属于远矽卡岩矿床,是深部来源的岩浆热液沿地层层间薄弱带进行渗滤交代的结果。(2)阿奇山矿床的成矿时代为306 Ma;稳定和放射性同位素组成指示成矿物质和流体主要为岩浆来源,部分来自围岩雅满苏组。成矿与区域岩浆活动时空关系表明矿床形成于晚古生代南天山洋俯冲的岛弧环境。阿奇山矿床属于渗滤交代矽卡岩矿床,是岩浆流体与雅满苏组中的钙质砂岩、灰岩透镜体进行水岩反应的产物。(3)天山地区的矽卡岩型铅锌矿化主要发在在晚古生代,受大洋俯冲岛弧环境、钙碱性岩浆活动、古生代海相火山碎屑岩和碳酸盐岩沉积、有利含矿热液供给通道以及成矿后良好的保存条件等多种因素共同制约。(4)通过系统归纳成矿时代、构造环境、容矿地层、岩浆活动以及矿化蚀变等多个控矿要素,认为天山矽卡岩型铅锌矿床的找矿潜力巨大。北天山岛弧带、哈萨克斯坦-伊犁板块北缘和南缘、乌兹别克斯坦中天山南缘以及新疆东天山之中天山地块是矽卡岩型铅锌矿床有利的成矿远景区。
王舒[8](2019)在《空间加权及高阶主成分分析在多元地学信息综合中的应用》文中指出主成分分析(Principal Component Analysis,PCA)是一种常用的多元统计分析方法,其目的是将一系列具有一定相关性的数据转换为少量的相互独立的主成分,从而实现数据的有效降维及系统分析。主成分分析过程一般基于输入数据的相关系数或协方差进行。然而,其相关矩阵或协方差矩阵的构造形式不考虑空间数据之间的相互关联和结构特性,这与因长期演化所造成的地质体之间或多或少均具有一定成因联系的情形相悖。而且原始信息的分布大都集中在平均值的附近,这是基于多数值的统计特性形成的,对于成矿过程发生的地质异常现象,有价值的信息往往隐藏在少数值处而被忽略。因此,传统主成分分析法虽然在地学研究中应用广泛,常用于对多源地学数据进行系统的综合分析,但是从算法构成的角度看,缺乏地质要素之间相互关系的约束。此外,成矿事件作为小概率地质事件,其发生、发展、结束在时间和空间上具有异常性。相应地,其所产生的地质信息在数据结构上应远离主体或背景。考虑到算法本身和成矿事件本质特征,本论文将传统主成分分析(PCA)、空间加权主成分分析(SWPCA)以及高阶主成分分析(HOPCA)法应用到中国东天山矿区铁资源的远景区圈定与评价中,通过对比分析探讨三种方法在矿产资源预测应用中的可行性及优势。论文主要工作如下:(1)根据研究区的地质模型,选取区域地球化学数据,利用以上三种方法挖掘地质数据与各类地质现象的内在联系,实现矿化信息及控矿要素的定量化识别,从而为成矿预测和地质勘探提供直观的数据支持。(2)以矿床模型为指导,通过遥感数据和地质数据定义了两种不同的空间权重因子来构建空间加权主成分分析模型,从而增强传统主成分中未包含的地质要素间相互关系信息。(3)以地质异常理论为指导,将高阶主成分分析法应用于多元地学信息继承中,通过选取最优阶次来增强传统主成分中被忽略掉的,不在均值范围内的信息。对数据进行非线性的拉伸变换,能够识别和突出小部分或与成矿有关的地质异常信息,为本研究区开展地球化学异常信息识别提供思路。
何格[9](2017)在《新疆北山地区大青山金矿床成因、控矿因素与找矿方向》文中研究指明大青山金矿床位于塔里木板块东北缘,北山古生代裂谷系南亚带西段,处于大青山-红十井-白山金、铜、铁、盐类成矿带上。长期以来,针对大青山金矿床的研究多集中于矿床地质特征,在成矿年代学、成矿流体性质和来源以及矿床成因等方面几乎处于空白,这在一定程度上制约了该矿床及成矿带中其他类似金矿床的找矿进程。鉴于此,本文在大量野外地质工作的基础上,综合运用构造地质学、岩石学、矿物学、矿床学、矿床地球化学、流体包裹体地质学、同位素地质学等多学科理论和方法,在查明大青山金矿床成因和控矿因素的基础上,总结了成矿规律,指明了下一步找矿方向。矿床产于下石炭统红柳园组变质岩中,其原岩为一套杂砂岩、亚杂砂岩和长石砂岩夹粘土岩。矿区内识别出3期变质变形作用,分别对应3期石英脉,其中第2期为含金石英脉矿体。金矿体受库鲁克脆韧性-韧性剪切带及其次级断裂控制,总体走向NEE。矿石类型分为石英脉型和蚀变岩型。矿石中金属矿物有自然金、毒砂、黄铁矿、黄铜矿、方铅矿、闪锌矿、磁黄铁矿、铜蓝及赤铁矿等;非金属矿物包括石英、绢云母、方解石、绿泥石、铁白云石、菱铁矿及钠长石等。围岩蚀变以硅化、绢云母化、黄铁矿化、毒砂化、绿泥石化、钠长石化和碳酸盐化为主。流体包裹体及同位素研究表明,成矿期石英脉中主要赋存气液两相盐水包裹体和CO2-H2O三相包裹体。成矿流体总体属于中高温(205423℃)、低盐度(0.228.80%NaCleqv)、中等密度(0.550.85 g/cm3)的H2O-CO2±CH4±N2体系。成矿流体来源主要为变质水,并与围岩发生了水-岩反应。流体不混溶作用可能是该矿床中金等成矿物质大量沉淀的原因。成矿作用发生于早二叠世(274 Ma),与赋矿地层中的变质增生锆石形成时代(269.6 Ma)一致。成矿物质可能主要来源于毗邻的三峰山VMS铜矿床及其赋矿玄武岩。大青山金矿床属于海西期末区域变质过程中形成的造山型金矿床。综合研究表明,大青山金矿床受地层、构造、蚀变围岩等因素控制,在此基础上,探讨了构造-成矿作用过程,建立了矿床的成因模式,认为区内4号、37号、41号、68号、104号、109号及115号石英脉具有较好的找矿前景。
余学中[10](2016)在《新疆西天山区域航磁重力特征与成矿环境》文中研究说明新疆西天山地区以往地质工作程度较低,近年找矿勘查进展迅猛,亟待进行大地构造环境、区域成矿规律研究。本文以成矿系列理论为指导,通过系统分析西天山地区区域航磁、卫星重力资料,结合典型金属矿床分析,推断厘定了西天山地区不同大地构造单位分布特征及其边界位置,总结了不同大地构造单元金属矿产控矿因素与矿床分布规律,进而指出了其不同的找矿方向,同时对伊犁石炭二叠纪裂谷大地构造性质及分布特征进行了论述与推断。通过区域航磁及重力资料综合研究,明确西天山地区的中天山构造单元南界为那拉提南缘断裂,以那拉提杂岩带与南天山构造单元分界,北界以尼勒克深大断裂为界与北天山分开,西边为伊犁古陆,为零星分布的元古界变质结晶地块与显生宙造山带镶嵌构成。其中那拉提杂岩带属于不同性质的碰撞造山形成,形成西天山最重要的造山型金矿成矿带,找矿潜力巨大。通过区域航磁资料,准确厘定了伊利石炭-二叠纪裂谷的位置及空间分布特征,并明确了其大地构造性质。伊犁石炭纪裂谷属于大陆裂谷,喷出(侵入)岩以中酸性为主,夹杂部分中基性岩浆岩,裂谷的裂开规模是从西往东呈断块状逐渐减小,同时张裂深度也是从西往东呈台阶式变浅。裂谷孕育的铁多金属矿产成矿条件优越,尤其是东段,裂谷相对较浅,温度高,含矿热液在相对较浅部位易形成岩浆型、夕卡岩型和热液型铁多金属矿产,往西随着裂谷逐渐加深,温度渐低,易形成相对低温热液富集型铁矿。尼勒克附近二叠纪陆相中基性火山岩属于发育在伊犁石炭纪裂谷基础上的局部陆相裂谷,构造演化时间短,影响范围有限,主要为寻找与陆相(次)火山岩密切相关的斑岩型、热液型铜矿有利区域。通过区域布格重力资料分析:伊犁古陆对应的高值重力异常区范围清晰,伊犁石炭纪裂谷的西段以及尼勒克县城南边的二叠纪裂谷中西段都叠加在伊犁古陆之上。富含阿希、伊尔曼得等中大型金矿床以及铜、铅锌矿床(点)的吐拉苏火山岩盆地位于伊犁古陆之上,尼勒克县城南边数量众多的铜矿床(点)富集于伊犁古陆之上(中西部),而往东则铜矿床(点)数量少、规模小。据此推测吐拉苏金、铜矿集区以及尼勒克南边数量众多的铜矿床(点)与伊犁古陆关系密切。古陆中富含的金、铜等金属元素在后期构造和岩浆热液活动叠加下,在构造有利部位(吐拉苏火山岩盆地和二叠纪裂谷中西部)富集成大型-超大型金矿床以及数量众多的中小型金、铜等多金属矿床(点)。
二、东天山铁矿床类型、地质特征成矿规律与找矿方向(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、东天山铁矿床类型、地质特征成矿规律与找矿方向(论文提纲范文)
(1)东天山石炭-三叠纪构造-岩浆演化与成矿的关系 ——以阿奇山铅锌(铜)矿为例(论文提纲范文)
摘要 |
Abstract |
引言 |
1 研究现状 |
2 选题依据 |
3 科学问题与研究内容 |
4 研究方法与工作量 |
5 基本论点及主要创新性认识 |
第一章 构造-岩浆演化序列及地球动力学机制 |
1.1 区域地质背景 |
1.1.1 区域地层 |
1.1.2 区域构造 |
1.1.3 区域岩浆岩 |
1.1.4 数据应用情况 |
1.2 构造-岩浆演化序列 |
1.2.1 晚奥陶世-早泥盆世构造-岩浆演化序列 |
1.2.2 石炭纪构造-岩浆演化序列 |
1.2.3 早-中二叠世构造-岩浆演化序列 |
1.2.4 晚二叠世-早中三叠世构造岩浆演化序列 |
1.3 地球动力学机制探讨 |
1.3.1 晚奥陶世-早泥盆世(406~466Ma) |
1.3.2 石炭纪(299~359Ma) |
1.3.3 早-中二叠世(272~299Ma) |
1.3.4 晚二叠世-早中三叠世(220~265Ma) |
1.4 小结 |
第二章 成矿规律及耦合成矿机理 |
2.1 主要矿种时空结构 |
2.1.1 铜矿 |
2.1.2 金矿 |
2.1.3 铜镍矿 |
2.1.4 铁矿 |
2.1.5 钼钨矿 |
2.1.6 银多金属矿及铅锌矿 |
2.1.7 成矿规律 |
2.2 构造-岩浆活动与流体的耦合机理 |
2.2.1 成矿流体来源及一般习性 |
2.2.2 构造-岩浆活动与流体的耦合机理 |
2.3 小结 |
第三章 热岩-枝找矿理论及找矿实践 |
3.1 我国当前找矿勘查存在的问题 |
3.2 可能的解决办法 |
3.3 热岩-枝组矿模型 |
3.4 热岩-枝宏观找矿概念 |
3.5 中观地质异常找矿方法 |
3.6 热岩-枝找矿理论优缺点及找矿实践 |
3.7 小结 |
第四章 阿奇山铅锌(铜)矿地质特征 |
4.1 区域地质矿产简介 |
4.2 矿区地质特征 |
4.2.1 地层 |
4.2.2 构造 |
4.2.3 岩浆岩 |
4.2.4 围岩蚀变 |
4.2.5 矽卡岩 |
4.2.6 地球物理特征 |
4.2.7 地球化学特征 |
4.3 矿体地质特征 |
4.3.1 矿体特征 |
4.3.2 矿石特征 |
4.3.3 成矿阶段划分 |
第五章 矿床控矿因素及富集规律 |
5.1 雅满苏组火山岩 |
5.2 小东山火山机构 |
5.2.1 小东山火山机构位置的确定及火山口特征 |
5.2.2 岩石组合及岩相学特征 |
5.2.3 断裂构造控矿及流体运移特征 |
5.3 成矿流体 |
5.3.1 流体包裹体 |
5.3.2 硫同位素 |
5.4 主成矿时代约束 |
5.4.1 雅满苏组火山岩年代学 |
5.4.2 锆石U-Pb同位素 |
5.5 矿化富集规律 |
5.6 结论和讨论 |
第六章 矿床成因及成矿模式 |
6.1 矿床成因 |
6.1.1 海底喷流沉积型矿床 |
6.1.2 矽卡岩型矿床 |
6.1.3 火山热液型矿床 |
6.2 成矿模式及找矿潜力 |
6.2.1 成矿模式 |
6.2.2 找矿潜力分析 |
第七章 结论及存在的问题 |
7.1 结论 |
7.2 存在的问题 |
致谢 |
参考文献 |
图版 |
附录 -补充材料 |
附录 -作者简介 |
一.个人简介 |
二.学术论文发表情况 |
三.在读期间参与的科研和勘查项目 |
四.在读期间学术交流 |
五.获奖情况 |
(2)东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 引言 |
1.1 选题背景与研究意义 |
1.2 研究现状与存在问题 |
1.2.1 国外火山岩型铁矿研究现状 |
1.2.2 国内火山岩型铁矿研究现状 |
1.2.3 东天山海相火山岩型铁矿研究现状 |
1.2.4 存在的科学问题 |
1.3 研究内容、技术路线以及完成工作量 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.3.3 完成工作量 |
1.3.4 论文创新点 |
第二章 区域地质背景 |
2.1 大地构造背景 |
2.2 区域地层 |
2.3 区域构造 |
2.4 区域岩浆岩 |
2.4.1 火山岩特征 |
2.4.2 侵入岩特征 |
2.5 区域矿产 |
第三章 研究样品与实验分析方法 |
3.1 样品采集和处理 |
3.2 全岩主量元素和微量元素实验分析 |
3.3 全岩Sr-Nd同位素分析 |
3.4 矿物电子探针实验分析 |
3.5 矿物LA-ICP-MS原位分析 |
3.6 稳定同位素分析 |
3.7 矿物能谱分析 |
第四章 矿浆型铁矿化-黑尖山铁矿 |
4.1 矿床地质特征 |
4.2 矿区富铁团块的特征 |
4.2.1 岩石学和矿物学特征 |
4.2.2 富铁基质地球化学特征 |
4.2.3 围岩地球化学特征 |
4.2.4 富铁基质Fe,O同位素特征 |
4.3 富铁团块的成因及形成机理探究 |
4.3.1 与围岩的时间关系 |
4.3.2 物质来源 |
4.3.3 成因及形成机理 |
4.3.4 与铁成矿的关系 |
4.3.5 东天山海相火山岩型铁矿富铁团块特征 |
第五章 岩浆热液交代-充填型铁矿化——雅满苏铁矿 |
5.1 矿床地质特征 |
5.2 含矿地层的岩石学和矿物学特征 |
5.3 含矿玄武岩地球化学特征 |
5.3.1 全岩成分特征 |
5.3.2 全岩Sr-Nd同位素特征 |
5.4 玄武岩源区特征 |
5.5 磁铁矿矿石特征 |
5.6 磁铁矿地球化学特征 |
5.6.1 磁铁矿成分特征 |
5.6.2 磁铁矿Fe,O同位素特征 |
5.7 磁铁矿成因 |
5.8 成矿过程探讨 |
第六章 热液-沉积型铁矿化——赤龙峰铁矿 |
6.1 矿床地质特征 |
6.2 矿石矿物学特征 |
6.3 赤铁矿地球化学特征 |
6.3.1 赤铁矿成分特征 |
6.3.2 赤铁矿Fe,O同位素特征 |
6.4 铁矿石中重晶石S同位素特征 |
6.5 矿床铁质来源 |
6.6 矿床成因 |
第七章 不同类型铁矿床的成因联系及成矿模式 |
7.1 矿浆成矿机理 |
7.2 岩浆热液交代-充填成矿机理 |
7.3 热液-沉积成矿机理 |
7.4 东天山海相火山岩型铁矿成矿模型 |
第八章 我国火山岩型铁矿对比研究 |
8.1 与长江中下游宁芜-庐枞地区陆相火山岩型铁矿对比研究 |
8.2 与西天山阿吾拉勒地区海相火山岩型铁矿对比研究 |
第九章 主要结论及研究展望 |
致谢 |
参考文献 |
(3)西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题目的及意义 |
1.1.1 选题来源 |
1.1.2 研究意义 |
1.2 国内外锰矿研究现状 |
1.2.1 全球锰矿资源概况 |
1.2.2 锰矿床成因类型 |
1.2.3 沉积型锰矿床成因研究现状 |
1.2.4 我国锰矿研究与勘查历史 |
1.2.5 西昆仑与西南天山结合部锰矿研究现状 |
1.3 研究内容与研究方法 |
1.3.1 研究内容及拟解决的科学问题 |
1.3.2 研究方法 |
1.4 完成的工作量 |
第二章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地质概况 |
2.2.1 区域地层 |
2.2.2 区域构造 |
2.2.3 区域岩浆岩 |
2.3 区域地球物理特征 |
2.3.1 区域重力特征 |
2.3.2 区域航磁特征 |
2.4 区域地球化学特征 |
2.5 区域矿产 |
第三章 典型锰矿床地质特征 |
3.1 西昆仑玛尔坎苏锰矿带 |
3.1.1 奥尔托喀讷什锰矿床 |
3.1.2 穆呼—玛尔坎土锰矿床 |
3.2 西南天山吉根锰矿远景区 |
本章小结 |
第四章 矿床地球化学特征 |
4.1 玛尔坎苏锰矿带 |
4.1.1 主量元素特征 |
4.1.2 微量元素、稀土元素特征 |
4.1.3 碳和氧同位素特征 |
4.2 吉根锰矿远景区 |
4.2.1 主量元素 |
4.2.2 微量元素和稀土元素特征 |
本章小结 |
第五章 成锰期的沉积相与沉积环境 |
5.1 石炭系沉积相与沉积环境 |
5.1.1 上石炭统喀拉阿特河组(C2k) |
5.1.2 下石炭统乌鲁阿特组(C1w) |
5.2 下泥盆统沉积相与沉积环境 |
5.2.1 沉积相 |
5.2.2 沉积环境 |
本章小结 |
第六章 成矿作用与矿床成因 |
6.1 锰的物质来源 |
6.2 锰沉积成矿的物理化学条件 |
6.3 锰的成矿作用 |
6.3.1 西昆仑玛尔坎苏锰矿带 |
6.3.2 西南天山吉根地区锰的成矿作用 |
6.4 西昆仑与西南天山结合部锰矿床富锰矿石形成机制 |
6.4.1 锰质供给具有多来源特点 |
6.4.2 Mn与Fe分离与富集 |
6.4.3 含炭质含锰岩系具热水沉积特征 |
6.4.4 沉积成岩—成矿过程有利的物理化学条件 |
6.4.5 小结 |
第七章 成矿规律与成矿预测 |
7.1 控矿地质因素分析 |
7.2 锰矿床保存的构造因素——构造改造 |
7.3 锰矿床成矿规律 |
7.4 玛尔坎苏锰矿带与吉根锰矿远景区对比 |
7.5 物探、化探和遥感找矿信息 |
7.5.1 玛尔坎苏锰矿带喀拉苏勘查区 |
7.5.2 吉根远景区 |
7.6 成矿预测 |
7.6.1 预测准则 |
7.6.2 主要找矿标志 |
7.6.3 锰矿床找矿靶区预测 |
7.7 沉积型锰矿床有效的找矿方法 |
第八章 结论 |
8.1 主要认识和结论 |
8.2 存在的问题与建议 |
致谢 |
参考文献 |
(4)新中国成立以来中国矿床学研究若干重要进展(论文提纲范文)
1 引言 |
2 中国矿床学研究进展概述 |
2.1 新中国成立初期至改革开放以前 |
2.2 改革开放早期至20世纪末 |
2.3 21世纪初至今 |
3 若干重要矿床类型的研究进展 |
3.1 岩浆矿床 |
3.2 斑岩型矿床 |
3.3 矽卡岩型矿床 |
3.4 玢岩型铁矿床 |
3.5 火山成因块状硫化物矿床(VHMS矿床) |
3.6 铁氧化物铜金矿床 |
3.7 赋存于沉积岩中的铅锌矿床 |
3.8 造山型金矿床 |
3.9 卡林型金矿床 |
3.1 0 克拉通破坏型金矿床 |
3.1 1 沉积矿床 |
3.1 2 铀矿床 |
3.1 3 稀土元素矿床 |
3.1 4 稀有和稀散金属元素矿床 |
3.1 5 与花岗岩有关的钨锡矿床 |
3.16超大型矿床 |
4 矿床模式与成矿理论 |
4.1 若干矿床类型的成矿模式 |
4.1.1 大塘坡式锰矿床成矿模式 |
4.1.2 大冶式矽卡岩型铁矿床成矿模式 |
4.1.3 铜陵狮子山式铜矿床成矿模式 |
4.1.4 玢岩型铁矿床成矿模式 |
4.1.5 康滇成矿带IOCG矿床成矿模式 |
4.1.6 石英脉型钨矿床模式 |
4.2 若干成矿理论 |
4.2.1 大陆碰撞成矿理论 |
4.2.2 分散元素成矿理论 |
4.2.3 成矿系列与成矿系统 |
4.3 重大地质事件与成矿 |
4.3.1 地幔柱与岩浆矿床 |
4.3.2 板块俯冲和造山与华南低温矿床 |
4.3.3 陆陆碰撞与斑岩铜矿 |
4.3.4 哥伦比亚超大陆裂解与IOCG矿床 |
5 矿床学研究方法 |
5.1 元素地球化学 |
5.2 同位素地球化学 |
5.3 流体包裹体研究 |
5.4 成矿年代学 |
5.5 矿田构造 |
5.6 成矿实验 |
6 找矿重大发现 |
7 结束语 |
(5)新疆清白山一带成矿规律与成矿预测(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究区自然地理交通位置 |
1.2 研究现状及存在问题 |
1.2.1 成矿预测理论国内外研究现状 |
1.2.2 清白山地区成矿潜力分析研究现状 |
1.2.3 研究区地质勘查工作程度 |
1.2.4 存在问题 |
1.3 研究目的及意义 |
1.4 研究内容、方法及完成的工作 |
第二章 区域地质背景 |
2.1 中天山地块 |
2.2 北山裂谷系 |
2.3 库鲁克塔格陆缘地块 |
2.4 塔里木陆块 |
第三章 研究区地质背景 |
3.1 地层 |
3.1.1 前寒武系 |
3.1.2 下古生界 |
3.1.3 上古生界 |
3.1.4 新生界 |
3.2 岩浆岩 |
3.2.1 侵入岩 |
3.2.2 火山岩 |
3.3 变质作用及变质岩 |
3.3.1 区域变质作用及变质岩 |
3.3.2 动力变质作用及变质岩 |
3.3.3 接触变质作用及变质岩 |
3.4 构造 |
3.4.1 褶皱 |
3.4.2 断裂构造 |
3.5 区域物、化探特征 |
3.5.1 重力场特征 |
3.5.2 区域磁场特征 |
3.5.3 区域化探特征 |
3.6 区域矿产特征 |
3.6.1 成矿区带划分 |
3.6.2 矿产特征 |
第四章 区域成矿规律 |
4.1 空间分布特征 |
4.2 时间分布规律 |
4.3 控矿因素分析 |
4.3.1 地层与成矿 |
4.3.2 侵入岩与成矿 |
4.3.3 变质作用与成矿 |
4.3.4 褶皱和断裂构造与矿产的关系 |
4.4 成矿系列厘定 |
4.5 成矿演化及区域成矿模式 |
4.5.1 新太古-元古代构造演化与成矿 |
4.5.2 古生代板块构造演化阶段 |
4.5.3 中新生代陆内演化阶段 |
4.6 清白山一带成矿潜力分析 |
第五章 地球化学找矿信息提取 |
5.1 清白山地区1:5 万地球化学特征 |
5.2 5万单元素异常特征 |
5.3 5万综合异常特征 |
第六章 地球物理找矿信息提取 |
6.1 磁测信息提取 |
6.1.1 磁场特征 |
6.1.2 磁异常特征 |
6.1.3 高精度磁法成果指示意义 |
6.2 重力异常特征 |
第七章 综合信息找矿模型及找矿预测 |
7.1 找矿标志 |
7.2 找矿模型 |
7.3 找矿预测 |
7.3.1 找矿靶区划分原则 |
7.3.2 找矿靶区特征 |
第八章 结论 |
致谢 |
参考文献 |
作者简介 |
(6)东天山古弧盆体系成矿规律与成矿模式(论文提纲范文)
1 构造分区及特征 |
1.1 大南湖-头苏泉岛弧带 |
1.1.1 卡拉塔格亚带 |
1.1.2 小热泉子-土屋亚带 |
1.2 康古尔韧性剪切带 |
1.3 阿奇山-雅满苏岛弧带 |
1.4 中天山地块 |
2 古弧盆体系划分 |
2.1 大南湖-头苏泉早-晚古生代弧盆体系 |
2.2 阿奇山-雅满苏晚古生代弧盆体系 |
3 古弧盆体系成矿规律 |
3.1 矿床空间分布规律 |
3.1.1 大南湖-头苏泉成矿带 |
3.1.1. 1 卡拉塔格成矿亚带 |
3.1.1. 2 小热泉子-土屋成矿亚带 |
3.1.2 阿奇山-雅满苏成矿带 |
3.2 矿床成矿时间演化规律 |
3.3 东天山古弧盆体系成矿规律 |
4 讨论 |
4.1 吐哈盆地南缘存在古老微陆块残片 |
4.2 东天山古弧盆体系构造演化 |
4.3 东天山古弧盆体系区域成矿模式 |
5 结论 |
(7)新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用(论文提纲范文)
中文摘要 |
abstract |
第一章 引言 |
1.1 选题背景及研究意义 |
1.1.1 铅锌资源形势及发展战略 |
1.1.2 天山地区矽卡岩型铅锌矿床研究意义 |
1.2 研究现状及存在问题 |
1.2.1 矽卡岩矿床研究现状 |
1.2.2 西天山阿尔恰勒矿床研究现状和存在问题 |
1.2.3 东天山阿奇山矿床研究现状和存在问题 |
1.3 研究内容与研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 拟解决的科学问题 |
1.5 主要工作量 |
1.6 论文创新点及特色 |
第二章 天山区域构造与铅锌矿产 |
2.1 基本构造单元 |
2.2 区域构造演化 |
2.2.1 前寒武纪古陆形成 |
2.2.2 古生代洋-陆俯冲增生 |
2.2.3 晚古生代陆-陆碰撞造山 |
2.2.4 中-新生代陆内成盆 |
2.3 重要成矿环境与铅锌矿床类型 |
第三章 西天山阿尔恰勒矿床 |
3.1 乌孙山成矿带构造背景 |
3.2 阿尔恰勒矿床地质特征 |
3.2.1 地层 |
3.2.2 岩浆岩 |
3.2.3 构造 |
3.2.4 矿体特征 |
3.2.5 热液蚀变和矿化特征 |
3.2.6 矿物共生关系 |
3.3 成岩成矿年代学和矿床地球化学 |
3.3.1 闪锌矿Rb-Sr测年 |
3.3.2 阳起石Sm-Nd测年 |
3.3.3 辉长-闪长岩锆石U-Pb测年 |
3.3.4 辉长-闪长岩主微量元素组成 |
3.4 同位素研究 |
3.4.1 C-O同位素 |
3.4.2 H-O同位素 |
3.4.3 S同位素 |
3.4.4 Pb同位素 |
3.5 阿尔恰勒矿床成矿作用过程 |
3.5.1 远矽卡岩矿床 |
3.5.2 成矿时代 |
3.5.3 成矿物质来源 |
3.5.4 矿床成因 |
3.5.5 对区域找矿勘查的启示 |
第四章 东天山阿奇山矿床 |
4.1 区域地质背景 |
4.2 矿床地质特征 |
4.2.1 地层 |
4.2.2 岩浆岩 |
4.2.3 构造 |
4.2.4 矿体特征 |
4.2.5 热液蚀变和矿化特征 |
4.2.6 矿物共生关系 |
4.3 成岩成矿年代学研究及矿床地球化学 |
4.3.1 黄铁矿Re-Os测年 |
4.3.2 花岗斑岩锆石U-Pb测年及Lu-Hf同位素组成 |
4.3.3 花岗闪长岩主微量元素组成 |
4.4 成矿物质来源 |
4.4.1 硫同位素 |
4.4.2 碳、氧同位素 |
4.4.3 铅同位素 |
4.5 阿奇山矿床成矿作用过程 |
4.5.1 接触交代矽卡岩矿床 |
4.5.2 成岩成矿时代 |
4.5.3 成矿物质来源 |
4.5.4 矿床成因 |
4.5.5 对区域找矿勘查的启示 |
第五章 天山晚古生代矽卡岩型铅锌矿床成矿规律 |
5.1 矽卡岩型铅锌矿床时空分布规律 |
5.2 天山矽卡岩型铅锌矿床的关键控矿要素 |
5.2.1 晚古生代岛弧环境 |
5.2.2 地层 |
5.2.3 岩浆岩 |
5.2.4 构造 |
5.2.5 热液蚀变 |
5.2.6 金属矿物组合 |
5.2.7 成矿物质和成矿流体来源 |
5.3 天山矽卡岩型铅锌矿床找矿潜力 |
第六章 结论 |
致谢 |
参考文献 |
附录 |
附实验方法 |
个人简历及在校期间取得的成果 |
(8)空间加权及高阶主成分分析在多元地学信息综合中的应用(论文提纲范文)
摘要 |
abstract |
1.绪论 |
1.1 选题背景与项目依托 |
1.2 国内外研究现状 |
1.3 研究目的与研究意义 |
1.4 主要研究内容与技术路线 |
1.4.1 主要研究内容 |
1.4.2 技术路线图 |
1.5 论文组织结构 |
2.多源地学数据处理分析方法 |
2.1 传统主成分分析 |
2.2 空间加权主成分分析 |
2.3 高阶主成分分析 |
2.4 奇异性理论 |
本章小结 |
3.研究区区域地质背景 |
3.1 研究区范围与自然地理概况 |
3.1.1 研究区范围 |
3.1.2 自然地理概况 |
3.2 区域地质概况 |
3.2.1 地质背景与构造环境 |
3.2.2 矿床特点 |
3.2.3 地层分布 |
3.2.4 围岩蚀变 |
3.2.5 成矿模式 |
3.3 数据类型 |
本章小结 |
4.控矿要素的识别 |
4.1 断层 |
4.2 雅满苏地层 |
4.3 中酸性侵入岩 |
本章小结 |
5.主成分模型对比分析 |
5.1 空间权重因子的确定 |
5.2 空间加权主成分分析模型与传统主成分模型对比 |
5.2.1 基于遥感蚀变信息的权重因子 |
5.2.2 基于成矿模型的权重因子 |
5.3 高阶主成分中最优阶次的确定 |
5.4 高阶主成分分析模型与传统主成分分析模型对比 |
本章小结 |
6.结论与展望 |
6.1 主要的成果和结论 |
6.2 存在的问题与展望 |
致谢 |
参考文献 |
(9)新疆北山地区大青山金矿床成因、控矿因素与找矿方向(论文提纲范文)
中文摘要 |
Abstract |
第1章 前言 |
1.1 选题依据及意义 |
1.2 造山型金矿床研究现状 |
1.3 大青山金矿床研究现状 |
1.3.1 地质勘查现状 |
1.3.2 科学研究现状 |
1.3.3 主要存在问题 |
1.4 研究内容和技术路线 |
1.4.1 研究内容 |
1.4.2 研究思路和技术路线 |
1.5 完成工作量 |
1.6 主要成果及认识 |
第2章 区域地质背景 |
2.1 地层 |
2.2 构造 |
2.2.1 褶皱构造 |
2.2.2 韧性剪切带 |
2.2.3 断裂构造 |
2.3 岩浆岩 |
2.3.1 侵入岩 |
2.3.2 火山岩 |
2.4 变质作用 |
2.5 地球物理与地球化学特征 |
2.5.1 地球物理特征 |
2.5.2 地球化学特征 |
2.6 区域矿产 |
2.7 区域地质构造演化史 |
第3章 矿床地质特征 |
3.1 地层 |
3.1.1 岩石学特征 |
3.1.2 原岩恢复与构造背景 |
3.1.3 变质岩含矿性 |
3.2 构造 |
3.2.1 褶皱构造 |
3.2.2 断裂和韧性剪切带 |
3.2.3 劈理和节理 |
3.2.4 变质变形期次及其构造样式 |
3.2.5 讨论 |
3.3 石英脉期次及与构造配套关系 |
3.4 含金石英脉矿体产出特征 |
3.5 矿石类型 |
3.6 矿石物质组分 |
3.7 矿石组构 |
3.8 围岩蚀变 |
第4章 矿床元素地球化学 |
4.1 石英脉含金性分析 |
4.2 成矿元素相关性分析 |
4.3 矿体横向元素分带特征 |
4.4 围岩蚀变地球化学 |
第5章 成矿流体地球化学 |
5.1 样品采集与分析 |
5.2 流体包裹体岩相学特征 |
5.3 包裹体显微测温结果 |
5.4 成矿压力与深度 |
5.5 激光拉曼分析 |
5.6 三期流体性质对比 |
5.7 流体不混溶作用与成矿 |
第6章 同位素地球化学与成矿年代学 |
6.1 氢氧同位素 |
6.2 热液锆石U-Pb定年 |
第7章 矿床成因与成矿模式 |
7.1 成矿背景和成矿基本特征 |
7.2 成矿流体及成矿物质来源 |
7.3 成矿时代 |
7.4 成矿过程与成矿模式 |
第8章 成矿规律与找矿方向 |
8.1 控矿因素 |
8.2 成矿规律 |
8.3 找矿标志 |
8.4 找矿方向 |
第9章 结论 |
致谢 |
参考文献 |
附录 |
(10)新疆西天山区域航磁重力特征与成矿环境(论文提纲范文)
中文摘要 |
Abstract |
1 引言 |
1.1 研究现状 |
1.1.1 区域地质构造研究现状与问题 |
1.1.2 西天山大陆动力学研究现状和问题 |
1.1.3 西天山矿产勘查研究现状和问题 |
1.2 选题依据和研究意义 |
1.3 拟解决的科学问题和研究内容 |
1.4 研究思路与研究方法 |
1.5 主要研究成果 |
2 西天山地区地质矿产特征 |
2.1 地层 |
2.1.1 前南华系 |
2.1.2 南华-震旦系 |
2.1.3 下古生界 |
2.1.4 上古生界 |
2.1.5 中-新生界 |
2.2 岩浆岩 |
2.2.1 火山岩 |
2.2.2 侵入岩 |
2.3 构造 |
2.3.1 构造单元划分 |
2.3.2 断裂构造 |
2.4 矿产 |
2.4.1 主要成矿带 |
2.4.2 主要矿产类型及分布特征 |
2.4.3 典型矿床 |
2.5 岩矿石物性特征 |
2.5.1 岩矿石磁性特征 |
2.5.2 岩矿石密度特征 |
2.6 地球化学异常 |
2.6.1 阿拉套Sn、W、Cu、Au异常带 |
2.6.2 依连哈比尔尕Au、Cu、Ni异常带 |
2.6.3 赛里木湖Cu、Au、Mo、Zn、Ag异常带 |
2.6.4 博罗科努Au、Cu、Mo、Pb、Zn异常带 |
2.6.5 阿吾拉勒一伊什基里克Cu、Pb、Zn、Au异常带 |
2.6.6 那拉提Cu、Ni、Au、W、Sn异常带 |
2.6.7 哈尔克—巴伦台Au、Cu、Pb、Sn异常带 |
2.6.8 南天山黑英山Sb、Hg、Cu、Au异常带 |
2.7 构造演化 |
2.7.1 前寒武纪古陆形成 |
2.7.2 古生代洋-陆俯冲增生 |
2.7.3 晚古生代陆-陆碰撞造山 |
2.7.4 伊犁石炭-二叠纪裂谷张开及闭合 |
2.7.5 中-新生代陆内成盆 |
3 区域航磁场特征 |
3.1 编图范围及资料概况 |
3.2 编图方法及技术参数 |
3.2.1 编图方法 |
3.2.2 主要技术参数 |
3.3 航磁反映的地质构造特征 |
3.3.1 重点磁场分区分析 |
3.3.2 航磁反映的构造特征 |
3.3.3 航磁反映的岩性特征 |
3.4 航磁与金属矿产的关系 |
3.4.1 航磁反映的海相火山岩型铁矿特征 |
3.4.2 航磁反映的陆相火山岩型铜矿特征 |
3.4.3 航磁反映的造山带型金矿特征 |
4 区域重力场特征 |
4.1 编图范围及资料概况 |
4.1.1 重力数据来源 |
4.1.2 重力资料精度评价 |
4.2 编图方法及技术参数 |
4.2.1 数据预处理流程 |
4.2.2 地形改正方法 |
4.2.3 中间层改正方法 |
4.3 重力场反映的地质构造特征 |
4.3.1 重力场分区解释 |
4.3.2 重力反映的构造特征 |
4.4 星布格重力与金属矿产的关系 |
4.4.1 星布格重力反映的金矿特征 |
4.4.2 星布格重力反映的陆相火山岩型铜矿特征 |
4.4.3 星布格重力反映的海相火山岩型铁矿特征 |
5 区域成矿环境 |
5.1 元古宙边缘裂陷盆地铅锌成矿系统 |
5.2 古生代洋-陆俯冲岛弧金铜铅锌成矿系统 |
5.2.1 乌兹别克斯坦Kalmakyr金铜矿床 |
5.2.2 中国新疆哈勒尕提铜矿床 |
5.3 晚古生代陆-陆碰撞造山金铅锌成矿系统 |
5.4 伊犁石炭纪裂谷海相火山岩型铁多金属矿床 |
5.4.1 备战铁矿 |
5.4.2 松湖铁矿 |
5.4.3 式可布台铁矿 |
6 找矿方向 |
6.1 找矿方向 |
6.1.1 造山型金矿床与找矿 |
6.1.2 浅层低温热液型金矿床与找矿 |
6.1.3 伊犁石炭纪裂谷铁多金属成矿与找矿 |
6.1.4 陆相火山岩型铜矿与找矿 |
6.1.5 古生代洋-陆俯冲岛弧金铜铅锌成矿与找矿 |
6.2 矿产预测 |
6.2.1 金矿 |
6.2.2 铁多金属 |
6.2.3 铜矿 |
6.2.4 金铜铅锌矿 |
6.3 结论 |
7 结论 |
8 致谢 |
9 个人简历 |
四、东天山铁矿床类型、地质特征成矿规律与找矿方向(论文参考文献)
- [1]东天山石炭-三叠纪构造-岩浆演化与成矿的关系 ——以阿奇山铅锌(铜)矿为例[D]. 夏冬. 中国地质大学(北京), 2020
- [2]东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究[D]. 宋哲. 中国地质大学, 2020(03)
- [3]西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测[D]. 臧忠江. 中国地质大学, 2020
- [4]新中国成立以来中国矿床学研究若干重要进展[J]. 李建威,赵新福,邓晓东,谭俊,胡浩,张东阳,李占轲,李欢,荣辉,杨梅珍,曹康,靳晓野,隋吉祥,俎波,昌佳,吴亚飞,文广,赵少瑞. 中国科学:地球科学, 2019(11)
- [5]新疆清白山一带成矿规律与成矿预测[D]. 刘超. 中国地质大学(北京), 2019
- [6]东天山古弧盆体系成矿规律与成矿模式[J]. 龙灵利,王京彬,王玉往,邓小华,毛启贵,孙燕,孙志远,张忠义. 岩石学报, 2019(10)
- [7]新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用[D]. 代俊峰. 中国地质大学(北京), 2019(02)
- [8]空间加权及高阶主成分分析在多元地学信息综合中的应用[D]. 王舒. 中国地质大学(北京), 2019(02)
- [9]新疆北山地区大青山金矿床成因、控矿因素与找矿方向[D]. 何格. 中国地质大学(北京), 2017(09)
- [10]新疆西天山区域航磁重力特征与成矿环境[D]. 余学中. 中国地质大学(北京), 2016(05)