一、黄铁矿微量元素地球化学特征及其对成矿流体性质的指示(论文文献综述)
赵春涛[1](2021)在《黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景》文中进行了进一步梳理黑龙江中部隶属中国东北地区,包括小兴安岭-张广才岭和佳木斯-兴凯两个重要成矿带,发育有众多的斑岩、矽卡岩、浅成低温热液等类型矿床,为我国的国民生产和经济发展提供了大量的铁、铜、铅锌、金、银、钨、钼等重要矿产资源,已成为中国东北地区大规模成矿的集中区域。长期以来,针对黑龙江中部内生金属成矿问题一直受到国内外地质学家的关注,为了揭示黑龙江中部地区内生金属成矿规律和资源潜力,并建立成矿找矿模式和地球动力学背景,本文在前人工作的基础上,选取研究区内重要的老柞山矽卡岩型铜金矿床、大安河矽卡岩型金矿床和二股矽卡岩型铁铜多金属矿床展开矿床地质、流体地质、成岩成矿年代学、地球化学等方面的研究工作,取得的研究成果如下:1.矿床地质特征揭示:老柞山矿床存在两期矽卡岩型矿化,早期大规模矽卡岩型铜金矿化发生在花岗闪长岩和麻山群大理岩之间的矽卡岩带中,形成矿区主要的铜金矿体和少量的磁铁矿矿体,晚期叠加的小型金矿化发生在闪长岩/闪长玢岩与麻山群之间的矽卡岩带中;大安河金矿床形成于辉长闪长岩和土门岭组碳酸盐岩之间的矽卡岩带中,在靠近地层的外带中形成中小规模的金矿体;二股中型铁铜多金属矿床形成于中粒花岗闪长岩和铅山组大理岩之间的矽卡岩带中。三个矿床发育的围岩蚀变主要为矽卡岩化、绢云母化、硅化和碳酸盐化等,其中二股矿床和老柞山矿床透闪石化较大安河矿床发育。三个矿床普遍发育磁铁矿化、黄铜矿化、硫铁矿化、方铅矿化和闪锌矿化,所不同的是:老柞山矿床以黄铜矿、自然金矿化发育,形成以金为主、伴生铜的大型铜金矿床;大安河磁铁矿、闪锌矿、黄铜矿、方铅矿和自然金矿化发育程度较弱,形成中小型金矿床;二股矿床磁铁矿、黄铜矿和闪锌矿化较发育,均可构成相对独立的中型内生矿床。2.流体包裹体研究揭示:三个矿床发育的流体包裹体类型主要为气液两相包裹体(W型)、含子晶三相包裹体(S型),同时有少量的纯气相(PV)、纯液相(PL)包裹体,其中矽卡岩亚期的包裹体类型主要为S型和W型包裹体,石英硫化物亚期除了老柞山矿床晚期的早期石英硫化物阶段发育S型包裹体外,其余阶段主要发育W型和PV、PL型包裹体。老柞山铜金矿床:获得早期铜金矿化流体包裹体的均一温度从469~539℃降低至228~341℃,盐度由10.1~58.6wt.%Na Cleqv降低至1.39~4.48 wt.%Na Cleqv,其中铜金矿形成时的温度和盐度分别为228~425℃和1.05~11.2 wt.%Na Cleqv;晚期叠加金矿化流体包裹体的均一温度从468~513℃降低至137~235℃,盐度由8.54~51.7 wt.%Na Cleqv降低至0.87~2.89 wt.%Na Cleqv,其中金矿形成时的温度和盐度分别为237~406℃和0.87~41.6 wt.%Na Cleqv。结合激光拉曼探针分析与H-O同位素特征进一步得出早期成矿流体总体为含N2的H2O-Na Cl-CO2±CH4体系,初始成矿流体具有岩浆性质的热流体或来自花岗质岩浆深成就位过程与麻山群大理岩发生接触交代形成的高温超临界类岩浆流体;晚期叠加金矿化成矿流体为H2O-Na Cl-CH4±CO2体系,伴随有少量的CO和H2S;初始成矿流体同样是岩浆性质的热流体,或来自闪长岩浅成就位过程与麻山群大理岩发生接触交代形成的高温超临界类岩浆流体。大安河金矿床:获得流体包裹体的均一温度从420~520℃降低至137~247℃,盐度由11.2~51.0 wt.%Na Cleqv降低至0.87~3.37 wt.%Na Cleqv,其中金成矿的温度、盐度分别为226~366℃和4.17~9.73 wt.%Na Cleqv;结合激光拉曼分析和氢氧同位素实验结果得出成矿流体总体为低氧逸度或还原的H2O-Na Cl-CH4±CO2体系,初始含矿流体具有岩浆热流体性质,或来自辉长闪长岩深成就位过程与古生代土门岭组大理岩发生接触交代形成的高温超临界类岩浆流体。二股铁铜多金属矿床:获得流体包裹体的均一温度从395~525℃降低至169~263℃,盐度由2.89~46.8 wt.%Na Cleqv降低至1.39~4.48 wt.%Na Cleqv,其中磁铁矿沉淀的温度和盐度分别为275~467℃和2.06~40.2 wt.%Na Cleqv,铜多金属成矿的温度和盐度分别为193~360℃和1.22~7.15 wt.%Na Cleqv;结合激光拉曼分析和氢氧同位素实验结果,得出成矿流体总体为含CH4的H2O-Na Cl-CO2体系,初始成矿流体为具有岩浆性质的热流体,或来自花岗闪长质岩浆深成就位过程与古生代铅山组大理岩发生接触交代形成的高温超临界类岩浆流体。三座典型矿床硫化物的S-Pb同位素具有与成矿相关侵入岩相似的特征,而与矿区内的碳酸盐地层存在较大的差异,指示其成矿物质可能主要来源于与成矿相关的侵入岩。综合合以上分析,我们认为研究区矽卡岩型金、铁铜多金属矿床的成矿物质来源于与成矿相关的侵入岩,初始成矿流体来源于岩浆出溶的高温、高盐度的含矿热液,随着成矿作用的发生,成矿流体中不断有大气水的加入;引起矽卡岩期金属矿物(磁铁矿)发生沉淀的机制主要为流体沸腾作用,石英硫化物期金属矿物(黄铜矿、硫铁矿、铅锌矿、自然金等)发生沉淀的机制受到流体沸腾、流体混合和水岩反应的共同制约,整个成矿过程,成矿流体经历了多次沸腾、混合及水岩反应,由高温、中高盐度的含矿热液向低温、低盐度的大气降水热液的演化。3.成岩成矿同位素年代学研究表明:(1)老柞山铜金矿床发育的花岗闪长岩、闪长岩和花岗闪长斑岩的锆石U-Pb加权平均年龄分别为264.6±2.6Ma、103.2±1.0Ma和104.6±1.8Ma,东矿带井下晚期叠加金矿化石榴石矽卡岩中石榴石U-Pb测年的反等时线年龄为107.4±1.8Ma,因此我们认为老柞山矿床早期矽卡岩型铜金矿化形成于晚二叠世(~265Ma),晚期矽卡岩型金矿化形成于早白垩世(~107Ma);(2)大安河矿床与成矿关系密切相关的辉长闪长岩的锆石U-Pb加权平均年龄为185.8±1.3Ma~183.7±1.3Ma,我们认为大安河矿床成岩成矿作用形成于早侏罗世;(3)二股矿床花岗闪长岩和似斑状花岗岩的锆石U-Pb加权平均年龄分别为183.8±1.4Ma~181.9±1.6Ma和182.7±1.0Ma和182.7±1.4Ma,结合前人(欧阳荷根等,2016)获得二股西山矿段矽卡岩型矿化蚀变带中的金云母40Ar-39Ar同位素年龄为181.0±4.2Ma,因此我们认为二股矿床成岩成矿作用形成于早侏罗世。4.在矽卡岩矿物学方面,老柞山晚二叠世铜金矿化和二股矿床形成的石榴石主要由钙铁榴石组成(And63.793.9Grs1.1534.6;And63.793.9Grs1.1534.6),辉石主要由透辉石组成(Di52.28~78.17Hd20.64~45.83Jo0.78~1.90;Di81.15~93.67Hd5.30~17.23Jo1.03~1.98),代表了矽卡岩矿物形成时的氧化-弱氧化的环境;大安河矿床和老柞山早白垩世金矿化形成的石榴石主要由钙铝榴石组成(Grs44.9374.76And21.8952.89;Grs58.0482.26And14.0237.39),大安河矿床的辉石以透辉石为主(Di65.3170.25Hd28.6733.65Jo0.451.12),老柞山早白垩世金矿化形成的辉石以钙铁辉石为主(Hd51.4975.68Di41.0445.40Jo3.053.44),代表了矽卡岩矿物形成时的还原环境。三个矿床石榴石和辉石的成分与世界上相应的矽卡岩型金、铁铜多金属矿床的石榴石、辉石的成分组成相似。5.与成矿相关侵入体的岩相学和地球化学特征揭示:与老柞山矿床晚二叠世大型铜金矿化成矿相关的花岗闪长岩属于弱过铝质、高钾钙碱性系列的埃达克质岩石,初始岩浆起源于增厚下地壳部分熔融形成的埃达克质岩浆(εHf(t)=-3.7~-1.7),具有浅成侵位(1.99~2.65km)、中等分异、弱氧化(ΔFMQ=+1.33;log(f O2)=-13.41)、较高含水量的特点;与早白垩世小型金矿化相关的闪长岩/闪长玢岩属于准铝质、高钾钙碱性的I型花岗岩,初始岩浆来源于壳幔混合(εHf(t)=-0.4~10.7),具有中浅成侵位(<3km)、低分异、还原(ΔFMQ=+0.24;log(f O2)=-11.88)、较高含水量(6.24wt.%)的特点。与大安河中小型金矿床成矿相关的辉长闪长岩属于过铝质钙碱性系列的岩石,初始岩浆来源于壳幔混合(εHf(t)=1.3~9.6;εNd(t)=-1.3~-1.2;(87Sr/86Sr)i=0.70621~0.70763),具有中深成侵位(4.13~4.26km)、低分异、还原(ΔFMQ=+0.17;log(f O2)=-15.11)、高含水量(6.80wt.%)的特点。二股中型铁铜多金属矿床的花岗闪长岩和似斑状花岗岩属于准铝质-过铝质、钾玄岩-高钾钙碱性的I型花岗岩,它们是同源岩浆在不同演化阶段结晶的产物,初始岩浆均起源于新生下地壳与古老地壳物质部分熔融形成的混合岩浆(εHf(t)=-0.5~6.2;εNd(t)=-1.7~-1.4;(87Sr/86Sr)i=0.70599~0.70897),其中与成矿相关的花岗闪长质岩浆具有中深成侵位(3.13~3.55km)、中等分异、氧化(ΔFMQ=+1.82;log(f O2)=-14.35)、较高含水量(5.69wt.%)的特点。结合各矿床的矿床类型和成矿规模,我们得出:与成矿相关侵入岩的岩浆酸碱度、演化程度和起源制约着研究区矽卡岩矿床的类型,岩浆高氧化性和高含水量的特征能够促进矿化的进行,但最关键的因素还是取决于岩浆的就位深度,侵位越浅,矿床规模越大。6.从三个矿床成矿岩浆形成时代、起源角度出发,建立了成岩成矿模式,估算了成矿期后抬升剥蚀状况,从地球动力学角度出发概括如下:(1)晚二叠世晚期,随着古亚洲洋逐渐闭合,引发松嫩地块与佳木斯地块发生拼贴,由此引发地壳的横向缩短使地壳厚度增大,因此在碰撞的挤压环境下,导致佳木斯地块地壳的增厚,该过程使下地壳中富含石榴子石的角闪岩相发生部分熔融,形成富含矿质的埃达克质岩浆。该岩浆形成后在热动力的驱动下上升,上升过程中可能与少量的古老地壳物质发生混合,在到达地壳浅部时从埃达克质岩浆中出溶出含矿流体,当含矿流体与麻山群大理岩接触时发生大规模的接触交代作用,并在晚期形成金矿化,最终形成了老柞山晚二叠世矽卡岩型铜金矿床。(2)早侏罗世早期,研究区开始受古太平洋板块西向俯冲的影响,由此造成软流圈物质上涌以及岩石圈地幔的减压熔融,一部分地幔物质直接侵位到地壳中深部,在该过程中可能加入了古老地壳物质,当岩浆遇到土门岭组地层时发生双交代反应,使其携带的成矿物质卸载而形成大安河金矿床;另外一部分地幔物质在下地壳底部聚集,产生的高温使地壳发生部分熔融形成原始岩浆房岩浆在上升演化过程中经结晶分异作用先后形成辉长质、花岗闪长质、花岗质岩浆,并依次发生深成、中浅成就位,当深成就位的花岗闪长质与铅山组钙质碳酸盐地层接触时,发生大规模的接触双交代作用,形成含铁、铜、铅锌等有用元素的类岩浆溶体,随后伴随温压降低,经历早期矽卡岩阶段、湿矽卡岩/退化蚀变阶段结晶作用之后,先后形成磁铁矿矿体、硫铁矿矿体、铜多金属矿体、金矿体和铅锌矿体,最终形成二股铁铜多金属矿床。(3)早白垩世晚期,研究区处于太平洋板块俯冲回转后撤发生弧后拉张的伸张环境,在该背景下软流圈物质上涌并加热下地壳使其发生部分熔融,形成的中酸性岩浆与幔源基性岩浆混合,并且这一混合岩浆在上升演化的过程中发生少量的地壳混染。混合的岩浆在研究区沿区域构造向上移动,多数喷出地表,形成了巨量的钙碱性火山岩,该次岩浆活动在小兴安岭地区产生了一系列典型热液金矿床,例如东安、团结构和高松山等;在佳木斯地块形成大量钙碱性火山岩和少量的侵入岩,部分侵入岩在到达地壳浅部时从岩浆中出溶出含矿流体,当含矿流体与麻山群大理岩接触时发生大规模的接触交代作用并在晚期形成金矿化,最终形成老柞山早白垩世矽卡岩型金矿床。(4)结合流体包裹体数据所计算矿床就位时的压力深度结果,我们认为二股和大安河矿床所在的小兴安岭地区剥蚀深度较深(~3km),深部找矿潜力有限,而老柞山矿床剥蚀程度相对较浅,形成深度较大,深部有较好的找矿前景。
赵宇霆[2](2021)在《诸广南长江地区花岗岩型铀矿成矿流体作用研究》文中研究指明花岗岩型铀矿铀矿我国铀矿床主要的工业类型,诸广山铀矿田则是我国华南花岗岩型矿床的重要矿田之一。长江地区作为诸广山矿田的重要组成部分,以往大量研究只针对于单个矿床,对区域中各个矿床的研究和对比存在不足。成矿流体研究一直是热液型矿床研究的核心问题之一,对诸广南长江地区热液型铀矿床开展系统性的成矿流体作用研究,可以完善和补充该地区铀矿床的成矿机制问题。长江地区的主要铀矿床分布在主断裂棉花坑断裂、里周断裂、黄溪水断裂、油洞断裂挟持位置的近南北向构造中,矿体产状相对稳定铀矿石类型多样,矿化延伸性好,在长江1号深钻的深部发现的厚大工业矿体,这证明区域上深部有较大的找矿空间。长江地区铀矿化矿物主要为沥青铀矿、伴生金属矿物有黄铁矿、方铅矿、闪锌矿、黄铜矿等,脉石矿物主要有石英、萤石、伊利石、方解石等。根据各个铀矿床的实际矿化情况,铀矿化可以划分为三期三阶段,即成矿前期、成矿期和成矿后期,其中成矿期可分为三个阶段:成矿早阶段、主成矿阶段和成矿晚阶段。其中成矿早阶段以红色微晶石英为特征,主成矿阶段主要为白色微晶石英或无色石英脉和紫色萤石,而成矿晚阶段则伴随浅色萤石、方解石和梳状石英的发育。成矿流体的组成和性质方面,棉花坑矿床的成矿流体由主成矿阶段的低盐度(6.15wt%Na Cleqv)、中高温(308℃)的Na Cl-KCl-Ca SO4-H2O体系逐渐演化为成矿后期低盐度(3.00wt%Na Cleqv)低温(147℃)的简单Na Cl-Ca SO4-H2O体系。长排地区铀矿床(长江1号矿体)成矿流体在成矿早阶段为低盐度(10.77wt%Na Cleqv)、中高密度、中高温(291℃)的高硫的Na Cl(F)-KCl(F)-Ca SO4-H2O的体系,而在成矿后期转化为低温(152℃)、低盐度(3.9wt%Na Cleqv)、高密度的低硫的Na Cl(F)-KCl(F)-Ca SO4-H2O体系。成矿流体为相对富含Ca2+的流体,且在成矿期萤石中包裹体气相成分主要为氢气,表明流体具还原性。书楼丘矿床的成矿流体由成矿期低盐度(5.4wt%Na Cleqv)、中高温(284℃)、中密度的流体转化为后期低温(189℃)、低盐度(4.9wt%Na Cleqv)、高密度的流体。水石矿床成矿后期的流体具有低盐度(3.87wt%Na Cleqv)、中高密度、低温(157℃)的特征。蚀变岩石地球化学研究表明,铀成矿流体为富碱土元素(Ca),大离子的过渡元素(Co、Cr、Mo)且成矿流体富集重稀土、富含成矿元素(U)以及F等挥发分,且成矿流体属还原性流体。成矿流体来源方面,成矿流体具有岩浆热液和深源地幔流体的特征,是岩浆热液作用于深部循环的地下水沿构造上涌与产铀岩体作用萃取成矿物质,并在运移和成矿过程中混入了大气降水,在成矿晚阶段和成矿后期大气降水的比例逐渐增大,并在后期作用于岩体形成较为广泛的伊利石蚀变。成矿流体的演化方面,从成矿前期到成矿期再到成矿后期,成矿流体由含幔源组分的碱性、还原性高温高压高硫流体逐渐经历降温减压和流体混合作用,演化成为具大气降水特征的氧化性、酸性流体。长江地区铀成矿是中生代大陆热点作用下,来自深部地壳和地幔的流体沿着区域深大断裂不断与富铀岩体作用富集了U元素并在浅部与大气降水混合后逐渐将铀矿卸载。长江1号的深部铀矿化表明了该地区向深部具有较好的成矿潜力。
陈杨[3](2021)在《安徽蚌埠隆起金矿床成矿作用及成矿模式研究》文中提出胶东地区位于华北克拉通东南缘,郯庐断裂带东侧,金探明储量已超过5000t,是我国最大的金成矿区,前人对胶东地区金的成矿作用已开展大量的研究,取得了丰富的研究成果,对区内矿产勘探起到了重要的指导作用。蚌埠隆起处于安徽省北部,位于华北克拉通东南缘,华南板块与华北板块的交接部位,郯庐断裂带西侧。前人已有研究表明,蚌埠隆起和胶东地区现今位置是由郯庐断裂带大规模左行平移引起,两区具有相似的成矿背景,因此蚌埠隆起区内一直将胶东式金矿床作为主要勘查目标,但新中国成立至2010年,区内矿产勘查工作一直没有取得突破,仅发现一些小型石英脉型金矿床和金矿点。江山金矿床是2012年在蚌埠隆起区内发现的一个大型破碎蚀变岩型金矿床,也是该区目前唯一发现的大型金矿床,该矿床的发现是蚌埠隆起内重要的找矿突破,显示区内具有良好的找矿前景。对蚌埠隆起江山破碎蚀变岩型金矿床和石英脉型金矿床的研究,与胶东地区同类型金矿床进行对比,将显着提高蚌埠隆起成岩成矿作用研究水平,并推动区内金矿床找矿勘查工作,具有重要的理论和矿产勘查意义。本次工作对江山金矿床开展了系统的地质特征、成矿年龄、同位素地球化学和成矿流体性质的研究,精细厘定了江山金矿床的成矿过程。同时结合该区石英脉型金矿床(中家山矿床、大巩山矿床、河口矿床、方庵矿床和荣渡矿床)的地质特征、矿床地球化学的研究,分析对比该区破碎蚀变岩型和石英脉型金矿床成矿作用的差异和共性,建立蚌埠隆起金矿床成矿模式。通过蚌埠隆起与胶东地区的金成矿背景和金成矿作用的对比,分析两地区金矿床金成矿作用的异同,初步探讨蚌埠隆起的下一步找矿方向。江山金矿床赋存于新太古代五河群变质岩中,通过赋矿地层浅粒岩和斜长角闪岩的锆石年代学、Hf同位素测试,确定浅粒岩的形成年龄和变质年龄分别为2496±19Ma和2452±47Ma,斜长角闪岩变质年龄为1824±11Ma,浅粒岩锆石的εHf(t)在1.81~8.30之间,t DM2=2545~2849Ma,为新生地壳重熔,对比区域地层岩性和时代,确定该矿床赋矿围岩属于五河群西堌堆组,而不是前人认为的庄子里组。江山金矿床矿体受NNE向临淮关-亮岗断裂控制,断裂是重要的控矿因素,断裂倾角约为40°,矿体均产于断裂带下盘。江山金矿床的矿石类型主要为网脉状矿石,少量的浸染状矿石和脉状矿石。根据不同类型矿石的穿切关系和矿物组合特征,可将该矿床成矿过程划分为3个阶段,即石英-黄铁矿-绢云母阶段(StageI)、石英-黄铁矿脉阶段(StageII)和石英-黄铁矿网脉阶段(StageIII),其中石英-黄铁矿网脉阶段是金的主要成矿阶段。通过对江山金矿床3个阶段代表性矿石的TIMA分析、黄铁矿微量元素测试和黄铁矿面扫工作,确定该矿床可见金主要以自然金和银金矿的形式赋存,不可见金主要以晶格金的状态、极少量以纳米粒子的形式赋存于黄铁矿内。矿床中成矿前和成矿后脉岩的锆石年龄分别为128.3±1.7Ma和121.2±1.4Ma,εHf(t)=-13.4~-24.02之间,t DM2=2.2~2.8Ga,确定其源区为古老地壳的部分熔融;结合成矿阶段黄铁矿的Rb-Sr等时线年龄(117.6±5.7Ma),本次工作较准确的厘定了江山金矿床的成矿年龄约为120Ma。本次工作通过对不同热液阶段的流体包裹体测试、氧同位素温度计和石英Ti温压计的测试分析,限定该矿床的成矿流体属于富CO2的H2O-NaCl、低盐度、低密度的流体体系,三个热液阶段的流体平均温度分别为390℃、300℃、280℃,流体平均压力分别为104Mpa、79Mpa和9Mpa,结合不同阶段流体性质的变化和岩相学观察,本次工作提出构造活动导致的压力骤降引起的流体相分离作用是矿床中金的沉淀机制。通过对不同阶段的黄铁矿、石英和铁白云石开展原位硫同位素、氧同位素和碳-氧同位素的测试,三个成矿阶段的黄铁矿硫同位素(δ34S=5~9‰)和流体氧同位素(δ18O=5~9‰)范围大致相同,三个成矿阶段的碳同位素分别为-10~-5‰、-4~-1‰和-3~0‰之间,结合矿床地质特征和矿床地球化学特征,本文认为该矿床成矿流体和成矿物质(Au、S)主要来源于地幔物质的脱挥发分作用,StageII和StageIII的成矿流体遭受围岩含碳物质的混染,围岩物质未提供金和硫。石英脉型金矿床均分布于蚌埠隆起东侧,受控于郯庐断裂带的次级-次次级断裂,该类矿床的成矿形式主要为石英脉状矿石充填于断裂带内,断裂倾角一般大于60°。通过前人的研究成果,确定该区石英脉型金矿床的成矿年龄为120±10Ma,成矿流体属于H2O-Na Cl-CO2±CH4、中低温、中低盐度的流体体系。本次工作对该区不同石英脉型金矿床开展的原位地球化学测试工作中,结果显示中家山、大巩山、荣渡矿床的硫同位素在6~9‰之间,河口和荣渡矿床的硫同位素在3~5‰之间,地层黄铁矿硫同位素为0~5‰之间;不同石英脉型金矿床流体氧同位素集中于5~9‰,方庵矿床和河口矿床部分流体氧同位素数据小于2‰;中家山矿床的碳同位素为-8~-4‰,方庵矿床和河口矿床的碳同位素在-7~0‰之间,大巩山矿床和方庵矿床的碳同位素在-2~2‰之间。从不同石英脉型金矿床的地球化学特征和地质特征,确定成矿流体和成矿物质(Au、S)主要来源于幔源物质的脱挥发分作用,不同矿床遭受了不同程度围岩含碳物质的混染,其中,方庵矿床和河口矿床的成矿过程中,围岩黄铁矿提供了部分硫。根据黄铁矿和石英地球化学特征,确定该区石英脉型金矿床的金沉淀机制主要为断层阀控制或流体混合引起的流体相分离作用。由此可见,该区不同石英脉型金矿床具有一致的深部过程,仅在浅部成矿过程中围岩混染的程度不同,部分金矿床有围岩硫的加入。蚌埠隆起破碎蚀变岩型和石英脉型金矿床的成矿时代大致相近,均在120±10Ma之间;金成矿流体属于中低温、中低盐度、含CO2的H2O-Na Cl±CH4的流体体系。两类金矿床基本赋存于脆-韧性剪切带中,高角度断裂(>60°)控制着石英脉型金矿床的发育,低角度断裂(<40°)控制破碎蚀变岩型金矿床的发育;两类金矿床的黄铁矿硫同位素(δ34S=3~10‰)、碳酸盐碳同位素(δ13C=-10~2‰)大致相同,破碎蚀变岩型金矿床的流体氧同位素在4~9‰之间,石英脉型金矿床的流体氧同位素主要集中于4~10‰之间,综上所述,本文认为蚌埠隆起破碎蚀变岩型金矿床和石英脉型金矿床是近同时形成的,具有相似的成矿流体和物质来源,成矿流体和成矿物质(Au、S)均来源于地幔物质的脱挥发分作用,遭受围岩含碳物质的混染。根据蚌埠隆起金矿床的地质、成矿流体性质、金沉淀机制、成矿流体和物质来源的特征,认为蚌埠隆起金矿床属于幔源流体成因模式的造山型金矿床。通过胶东地区和蚌埠隆起区域地质特征的对比,两地区的基底、构造、燕山期岩浆岩的来源和演化较为相似,但蚌埠隆起岩浆岩规模远小于胶东地区;同时,两地区金矿床金成矿类型、矿床地质特征、成矿时代、成矿流体和物质来源均较为相同,两地区发现金矿床的主要区别在于赋矿围岩的差距,因此本文认为蚌埠隆起和胶东地区金矿床属于近同时发生的、有相似金成矿作用的金成矿事件。胶东地区金矿床主要赋存于该区数条主断裂控制的不同岩性接触带之间的脆-韧性剪切带内。蚌埠隆起江山金矿床受控于该区的临淮关-亮岗断裂,该断裂控制着地层中浅粒岩和片麻岩接触部位发育的脆-韧性剪切带,江山金矿床即赋存于该脆-韧性剪切带,与胶东金矿床控矿因素较为类似。本次工作认为在临淮关-亮岗断裂控制的脆-韧性剪切带处有寻找破碎蚀变岩型金矿床的潜力。
曾志杰[4](2021)在《东秦岭三道庄矽卡岩型钼钨矿床矿物学特征及成矿作用研究》文中指出三道庄超大型矽卡岩型钼钨矿床位于华北克拉通南缘,处于着名的东秦岭钼矿带内,是我国典型的矽卡岩型钼钨矿床之一。前人对三道庄钼钨矿床的研究主要集中于矿床地质特征、成矿时代、成矿流体及成矿岩体地球化学特征等方面,而对于三道庄矿床成矿机制,尤其是成矿作用过程中挥发份(F、Cl、S)和氧逸度变化对巨量钼钨沉淀的控制作用研究较为薄弱。因此,本次研究以三道庄矿床成矿岩体中的造岩矿物(岩浆黑云母和岩浆磷灰石)、不同热液蚀变阶段的蚀变矿物(热液黑云母、热液磷灰石、石榴石、透辉石、阳起石)及不同产状、成矿阶段的金属矿物(磁铁矿、白钨矿)为主要研究对象,利用电子探针和LA-ICP-MS原位微区分析技术对不同矿物进行主、微量和稀土元素含量测定,通过矿物温度计、氧逸度计等方法探讨从岩浆到热液阶段,成矿系统中温度、氧逸度、挥发份等物理化学条件的变化,揭示不同矿物的形成环境、成矿物质的迁移和沉淀机制,从而全面理解矽卡岩型钼钨矿床金属沉淀的控制因素,为今后类似矿床的成矿机制研究及找矿预测等提供参考。根据野外地质调查和室内研究结果显示,三道庄矽卡岩型钼钨矿床的成岩成矿阶段可划分为6个阶段,分别为:(1)成岩阶段,即与成矿有关的花岗斑岩形成阶段;(2)早期矽卡岩阶段;(3)石英-钾长石-黑云母阶-磁铁矿阶段;(4)晚期矽卡岩阶段;(5)石英-硫化物阶段;(6)石英-碳酸盐阶段。其中,石英-硫化物阶段为主要成矿阶段,辉钼矿主要成细脉状、浸染状矿化。对岩体中呈斑晶和基质状态分布的黑云母和石英-钾长石-黑云母-磁铁矿脉中黑云母的电子探针成分计算,结果显示斑晶黑云母和基质黑云母结晶温度分别为623°C-662°C和546°C-579°C,热液黑云母蚀变温度为355°C-435°C,表明从岩浆到钾硅酸盐化蚀变阶段,整个成矿体系温度是逐渐降低的。花岗斑岩中岩浆黑云母和磷灰石电子探针成分显示岩浆系统中挥发份F、S含量均较高,Cl含量较低,而早期较高F、S含量增大了成矿金属物质W、Mo在各体系中的溶解度,W、Mo金属可能主要以Mo O3F-和H3WO4F的形式在流体中迁移。热液黑云母和磷灰石电子探针成分显示流体中F含量逐渐较小,Cl含量在矽卡岩阶段有上升趋势,表明Mo O2Cl22-n、WO2Cl22-n络合物可能参与了Mo、W的迁移。而初始岩浆流体较高S含量,为辉钼矿富集,提供了物质基础。岩浆黑云母Fe3+/Fe2+(0.11-0.13)和XMg值(0.56-0.60)整体均低于石英-钾长石脉中黑云母Fe3+/Fe2+(0.12-0.17)及XMg值(0.60-0.64),暗示从岩浆阶段到钾硅酸盐化阶段流体氧逸度的增大。同时,不同产状的磁铁矿、磷灰石LA-ICP-MS成分分析结果显示,花岗斑岩、石英-钾长石-黑云母-磁铁矿脉和晚期矽卡岩阶段中磁铁矿的V含量分别为:787×10-6-1274×10-6(平均值921×10-6)、17.34×10-6-215.51×10-6(平均值105.76×10-6)和2563×10-6-3620×10-6(平均值2911×10-6),总体表现为从成矿花岗斑岩到钾长石-黑云母-磁铁矿脉,磁铁矿中V含量呈微弱的下降趋势,而从石英-钾长石-黑云母-磁铁矿脉到晚期矽卡岩阶段,磁铁矿中的V含量呈明显的升高趋势;花岗斑岩、矽卡岩和石英-方解石脉中磷灰石δEu值分别为:0.21-0.32、0.54-0.67、0.34-0.65,表现为先增大后减小特征。这些特征说明从岩浆阶段到钾硅酸盐化阶段再到晚期矽卡岩阶段,流体氧逸度先增大后降低。矽卡岩阶段早期主要以钙铁榴石和透辉石的组合,而晚期为钙铝榴石和钙铁辉石的组合,也暗示氧逸度存在降低现象,且早期石榴石环带中Fe和Al含量的“锯齿状”变化,表明幕式流体作用的存在,导致局部成矿阶段会有升高-降低的变化。电子探针成分结果显示5种类型白钨矿中Mo的含量分别为:10.75%-24.11%(Sch1a)、2.81%-11.75%(Sch1b)、0.23%-0.56%(Sch2a)、0.16%-0.47%(Sch2b)、0.11%-0.36%(Sch3),总体表现为从Sch1a到Sch3,白钨矿中的Mo含量一直呈下降趋势,且Mo和δEu有着很好的正相关性,这些特征暗示晚期矽卡岩阶段流体氧逸度的进一步减小,而氧逸度的降低对W以白钨矿形式沉淀具有重要意义。综上所述,三道庄钼钨矿早期岩浆流体具有高温度、氧逸度和富挥发份F、S特征,岩浆黑云母、磷灰石和磁铁矿成分显示早期流体Mo、W含量较高;随着岩浆热液的演化,在矽卡岩阶段和钾化阶段氧逸度小幅度上升,黑云母、磷灰石和磁铁矿Mo、W含量一致显示,流体中Mo和W含量呈增大趋势。随着成矿流体与围岩之间反应增强,形成大量矽卡岩矿物,并伴随有流体沸腾及大气水的混合作用导致流体性质的快速转变,引起磁铁矿、白钨矿和辉钼矿等开始大规模沉淀。因此,三道庄矿床W、Mo的沉淀是受到多种机制的协同作用。
赵拓飞[5](2021)在《青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究》文中研究表明青海省卡尔却卡-阿克楚克赛地区位于青海与新疆交界处,大地构造位置属柴达木地块南缘,东昆仑造山带西段。研究区经历了始太古代-古元古代结晶基底的形成,中-新元古代板块汇聚、前原特提斯洋盆演化和玄武岩高原的拼贴,加里东期-海西早期原特提斯洋构造域和海西晚期-印支早期古特提斯洋构造域的演化,印支晚期-燕山早期陆内造山作用和燕山晚期-喜马拉雅期区域的隆升作用。同时漫长而复杂的构造演化过程导致区内发育多期多类型矿产资源,但近几年受客观条件所限,一些科学问题制约着找矿突破,如地质研究程度较低,部分基础地质信息模糊,区内构造演化存在争议,矿床类型和成矿作用有待深入研究。本文通过对区内各类岩体和典型矿床进行研究,完善基础地质信息,探讨成矿动力学模式,总结成矿规律,从而进一步总结区域成矿理论,辅助区内矿产勘探工作。通过对研究区内黑云二长片麻岩、石英闪长岩、花岗闪长岩和二长花岗斑岩的年代学和地球化学等研究认为:厘定阿克楚克赛地区“古元古界金水口群片麻岩”实为新元古代早期(~946Ma)片麻状黑云二长花岗岩,岩体具同碰撞S型花岗岩特征。对比发现区域上该时期岩浆活动广泛发育,认为东昆仑地区在中-新元古代发育强烈的构造-岩浆事件,其可能响应全球性Rodinia超大陆的聚合。厘定阿克楚克赛高Mg闪长岩成岩时代为加里东晚期(~426Ma),岩石具赞岐岩类地球化学特征。加里东晚期受原特提斯洋演化的影响,万宝沟大洋玄武岩高原拼贴至北部柴达木地块南缘之上,深部洋壳板片继续俯冲发生断离,软流圈沿板片断离形成的板片窗上涌至地壳浅部形成镁铁质-超镁铁质侵入岩,上涌过程中与富Mg的断离板片熔融,形成本区高Mg闪长岩类。卡尔却卡花岗闪长岩形成于印支早期(~242Ma)。岩石为新生玄武质地壳和古老的硅铝质地壳物质混合形成,与俯冲带岩浆岩特征一致。表明印支早期与古特提斯洋俯冲有关的岩浆侵入活动强烈。阿克楚克赛二长花岗斑岩形成于印支晚期(~221Ma)。岩石为高分异I型花岗岩,岩浆主要来源于下地壳的部分熔融,并有幔源物质的加入,形成于强烈伸展的构造背景下。东昆仑地区古特提斯洋在海西晚期向北俯冲,中三叠世洋盆闭合,形成与俯冲有关的壳源岩浆。晚三叠世东昆仑地区进入后碰撞伸展阶段,岩石圈拆沉减薄导致大规模伸展作用发生,幔源岩浆上涌,直接侵位形成基性-超基性岩石。上侵过程中或与地壳物质混合形成壳幔混源岩浆,或加热地壳形成壳源岩浆。印支期岩浆活动最为强烈,是东昆仑地区最重要的岩浆-热液矿床成矿作用期。对研究区内四个典型矿床(点)进行研究,阿克楚克赛地区原被划分为泥盆纪闪长岩岩体实为辉石岩和辉长岩经自变质作用形成的杂岩体,形成时代包括加里东晚期和印支晚期。厘定含矿辉石岩锆石U-Pb年龄为416±3Ma,变质辉长岩锆石U-Pb年龄为424±3Ma。矿床类型为岩浆铜镍硫化物矿床,含矿岩浆起源于亏损地幔的部分熔融并受到俯冲组分的加入,同时侵位过程中奥陶-志留纪滩间山群大理岩地层为幔源岩浆的成矿作用提供了外源硫,Ca2+、Mg2+等离子的加入导致岩浆结晶温度降低,使岩浆中硫化物发生过饱和,从岩浆中熔离成矿。区内新发现一期晚三叠世(~220Ma)辉长岩岩体,岩体形成于造山后岩石圈拆沉减薄,幔源物质底侵的构造背景下。岩浆源区为富集岩石圈地幔,岩浆结晶分异程度差,岩相单一,硫化物熔离程度低,蚀变和矿化弱。综上,青海东昆仑西段加里东晚期铜镍硫化物矿床找矿潜力巨大,印支晚期找矿潜力一般。通过野外调研,在阿克楚克赛地区新发现一处铅、锌矿化点。早三叠世花岗斑岩(~244Ma)发生强蚀变,钻孔浅部可见青磐岩化带,西侧钻孔深部出现泥化带,并发育浸染状黄铁矿、方铅矿、闪锌矿等。铅、锌品位低且连续性好,符合斑岩型矿床的面型蚀变和分带特征。限于矿化点发现时间晚,工作程度低,目前研究仍处于蚀变带外围。但该矿化点热液蚀变强烈,蚀变带规模大,剥蚀程度小,深部有进一步勘查的潜力。该矿化点的发现表明昆中带在总体抬升大的背景下其北部存在差异性的下降,具有斑岩型矿床的找矿潜力。卡尔却卡A区分南北两矿段,南矿段成矿与硅化关系密切,矿体严格受断裂构造控制,矿石发育团块状构造,铜矿石品位高且变化大。厘定含矿石英脉Ar-Ar等时线年龄为241±2Ma,代表成矿年龄。S-Pb同位素显示成矿物质具壳幔混合特点,H-O同位素显示成矿流体以岩浆水为主并存在大气水参与。流体包裹体发育富液相、含子矿物三相和含CO2包裹体,主成矿阶段均一温度为293℃~360℃,含矿物质主要以液相形式迁移,成矿早阶段流体发生了不混溶,流体不混溶和温度降低是矿质沉淀的主导因素。综合研究认为卡尔却卡A区南矿段为受断裂构造控制的中-高温热液脉型铜矿床,而非前人认为的斑岩型矿床。北矿段矿体产于隐爆角砾岩体内,矿化厚度小,平面延长远大于垂向延伸,角砾无磨圆且未发生较大位移,隐爆作用仅发生于岩体表壳,与典型的隐爆角砾岩筒矿床不同,本文将其定为产于岩体顶部的隐爆角砾岩壳矿床。S同位素显示成矿流体主要来自岩浆;H-O同位素显示成矿流体为大气降水与岩浆水混合。流体富CO2和N2,说明可能有幔源流体参与成矿。断裂构造不发育并且未形成热液向上运移通道导致岩浆难以达到二次沸腾的条件发生持续隐爆作用。因此矿床主要为岩体顶部和裂隙中汇聚的有限气水热液发生小规模隐爆作用形成,虽能构成矿化但不具备形成大矿的潜力。卡尔却卡B区为典型的矽卡岩型铜钼矿床,围岩为滩间山群大理岩,矿床形成于花岗闪长岩与地层接触带形成的矽卡岩内。与成矿有关的花岗闪长岩年龄(~242Ma)与辉钼矿矿石Re-Os同位素年龄(~242Ma)一致,代表成矿时代为早三叠世。早期石英-硫化物阶段流体主要形成富液相和纯气相包裹体,表现为高温(253℃~390℃)中低盐度(4.0~16.1%Na Cl eq.)特征,H-O同位素显示成矿流体主体以岩浆水为主,大气水混入对成矿的影响有限。因此温度降低是矿质沉淀的主要原因。S-Pb同位素和Re含量显示成矿物质具有壳幔混合的特点。综合研究认为,花岗闪长岩侵入滩间山群地层中发生接触交代作用产生矽卡岩,岩体演化形成的含矿热液以及不断萃取地层中有用组分共同组成成矿流体,受大气降水或其他浅部地体水的混合冷却,矿质进一步在构造薄弱部位沉淀和富集,形成本区具有规模的矽卡岩型铜钼矿床。青海东昆仑西段主要有三期成矿:加里东晚期、印支早期和印支晚期。加里东晚期主要形成与板片断离有关的岩浆铜镍硫化物矿床,幔源岩浆主要来源于亏损地幔;印支早期受古特提斯洋北向俯冲的影响,主要形成与俯冲背景有关的矽卡岩型-中高温热液脉型铜钼矿床,铜主要来源于幔源岩浆;印支晚期进入后碰撞伸展环境,岩石圈拆沉,幔源岩浆底侵,导致从基性到酸性岩石均发育,主要形成与伸展背景有关的斑岩型-矽卡岩型铜、铁、铅、锌等金属矿床。青海东昆仑地区整体西段抬升剥蚀大于东段,而西段以昆中带剥蚀程度最大,以黑山-那陵格勒河断裂为界,昆中带内北部抬升剥蚀弱于南部,南部浅成矿床几乎剥蚀殆尽,找矿方向以岩浆矿床和中深成高温热液脉型矿床为主。北部抬升及剥蚀较弱,印支期斑岩型、矽卡岩型及中低温热液脉型矿床成矿和保存条件良好,但该时期岩浆铜镍硫化物矿床找矿潜力有限,应主攻斑岩型、矽卡岩型及中低温热液脉型矿床。
李俊海[6](2021)在《贵州西南部架底和大麦地玄武岩中金矿床成矿过程研究》文中进行了进一步梳理架底大型金矿和大麦地中型金矿是近年来在贵州西南部玄武岩分布区新发现的以玄武质岩石为主要容矿岩石的卡林型金矿床的典型代表。这两个矿床位于南盘江-右江卡林型金矿成矿区北段之莲花山背斜核部及南东翼次级揉褶带,金矿体呈层状、似层状,主要赋存于构造蚀变体(SBT)中和峨眉山玄武岩组(P3β)的层间破碎蚀变带中,金矿体在空间上呈上、下叠置关系,容矿岩石主要为玄武质火山角砾岩、凝灰岩、角砾状玄武质火山角砾岩及角砾状凝灰岩,少量为玄武岩、角砾状灰岩。针对架底和大麦地金矿成矿过程,本研究系统开展了成矿地质背景、矿床地质特征、主-微量元素、岩相学、矿物学、载金矿物微区主-微量元素、同位素(H-O、C-O、S、Pb、Hg)和流体包裹体等分析,并将分析结果与黔西南以沉积岩为容矿岩石的卡林型金矿进行了详细对比研究。本文主要揭示了架底和大麦地金矿的矿物生成顺序、成矿流体性质及成矿物质来源、成矿过程、以玄武岩为容矿岩石的金矿与黔西南以沉积岩为容矿岩石的金矿的重要相似性和关键差别等,建立了玄武岩容矿金矿床成矿模式,总结了玄武岩分布区卡林型金矿找矿标志,并进行了找矿远景分析。本次研究主要获得以下认识:(1)架底和大麦地金矿中的矿物由成矿前期、热液成矿期和局部氧化期三期事件形成,其中热液成矿期可进一步分为成矿主阶段和成矿晚阶段;成矿前的峨眉山玄武岩中的矿物主要包含斜方辉石、单斜辉石、斜长石、磁铁矿,以及少量的钛铁矿和磷灰石;热液成矿期成矿主阶段形成的矿物主要包括含砷黄铁矿、毒砂、似碧玉石英(局部为石英)、伊利石、(铁)白云石(局部为钙-镁菱铁矿)、金红石和磷灰石,这些矿物主要呈浸染状分布于矿石中,成矿晚阶段形成的矿物主要包括方解石、雄黄、辉锑矿、石英、雌黄,这些矿物多呈脉状充填在矿体附近的开放空间;在后期表生氧化作用下,在浅地表岩石中局部可见绿泥石、赤铁矿和褐铁矿。(2)金以不可见金形式主要赋存于含砷黄铁矿和毒砂中,载金黄铁矿和毒砂富集Au、As、Sb、Hg、Tl、Cu等成矿元素。硫化作用形成含砷黄铁矿和毒砂,并导致金的沉淀成矿。硫化作用是金等元素沉淀的关键因素。(3)成矿元素(Au、As、Sb、Hg、Tl)在矿化过程中显着加入,少量Bi、Te、Se、Cd和Ag在矿化过程中也不同程度地加入。大量K2O的加入可能与粘土化过程有关,CaO含量基本不变说明去钙化作用不显着。Si O2、Fe2O3、CaO、MgO、Ti O2和P2O5含量基本不变,但存在形式发生了改变;Si、Ca、Mg在成矿前主要存在于硅酸盐矿物(如:斜方辉石、斜长石、单斜辉石)中,成矿后Si主要以石英、伊利石的形式存在,Ca、Mg主要存在于(铁)白云石中;Fe在成矿前主要存在于斜方辉石、单斜辉石、磁铁矿、钛铁矿中,成矿后主要存在于黄铁矿、毒砂、(铁)白云石中;Ti在成矿前主要存在于钛铁矿中,成矿后主要存在于金红石中;P在成矿前主要存在于岩浆成因的磷灰石中,成矿后主要存在于热液成因和岩浆成因的磷灰石中。(4)架底、大麦地金矿成矿期石英的δDV-SMOW值为-56~-81‰,δ18OH2O值为10.9~12.5‰,其成矿流体可能主要为岩浆热液。成矿期白云石δ13C值为-3.24~-6.15‰,表现为以深部幔源碳为主;δ18OH2O值为8.27~12.06‰,显示成矿热液可能主要为岩浆热液,不排除有变质水的加入。辉锑矿δ34S值为-0.90~-1.90‰,成矿流体中的硫可能主要来源于深部岩浆。辉锑矿铅同位素组成显示铅主要为造山带来源,并有壳源铅的混合。全岩δ202Hg值为-0.63~1.38‰,?199Hg值为-0.02~-0.12‰,显示了岩浆来源Hg的特征。综合H-O、C-O、S、Pb、Hg同位素分析,成矿流体可能主要是深部岩浆释放形成的岩浆热液成矿流体,并在上升过程和成矿过程中由于水-岩反应导致岩浆热液混有地层的同位素组成信息。(5)架底和大麦地金矿成矿流体具有低温(150~210℃)、中-低盐度(8~12wt%NaCleq.)、低密度(0.69~0.94g/cm3)等特征。(6)架底和大麦地金矿与黔西南沉积岩容矿卡林型金矿以及区内其他卡林型金矿可能属于同一成矿系统,它们形成于同一区域成矿事件,这些金矿最有可能是同一区域岩浆热液成矿作用下的产物。(7)基于以上分析结果,本研究揭示了贵州西南部架底和大麦地玄武岩中金矿床成矿过程并建立了玄武岩容矿金矿床成矿模式:综合H-O、C-O、S、Pb、Hg同位素分析以及对黔西南地区重磁数据研究,表明深部隐伏花岗质岩浆释放含金成矿流体。成矿流体富含Au、As、Sb、Hg、Tl等成矿元素及CH4、CO2等挥发分,具有高压-超高压力等特征。在燕山期构造作用下,成矿流体沿深大断裂上涌至P2m与P3β之间的区域构造滑脱面。部分成矿流体侧向运移并与区域构造滑脱面附近的岩石发生水-岩交代反应形成SBT。部分成矿流体沿断裂向上运移至P3β的凝灰岩中或层间破碎带的玄武质火山角砾岩中时,由于岩石孔隙度差等原因,成矿流体侧向运移。当成矿流体汇聚于构造高点位置(如:背斜核部,穹隆)后,与富Fe玄武质岩石发生水-岩反应,玄武质岩石中的斜方辉石、单斜辉石、斜长石、磁铁矿、钛铁矿等矿物发生溶解,释放出Fe2+等,释放出的Fe2+与成矿流体中的S和As结合形成含砷黄铁矿和毒砂,Au-HS络合物发生分解,Au以不可见金形式进入含砷黄铁矿和毒砂,硫化作用形成载金含砷黄铁矿和毒砂,导致金沉淀富集,分别形成SBT中的金矿体和P3β中的金矿体。与此同时,水-岩反应还形成似碧玉石英(局部为石英)、(铁)-白云石(局部为钙-镁菱铁矿)、伊利石、金红石和磷灰石。在成矿晚阶段,方解石、雄黄、辉锑矿、石英、雌黄等矿物呈脉状充填在矿体附近的开放空间。(8)玄武岩分布区卡林型金矿找矿标志主要有:地球化学标志(Au-As-Sb-Hg组合异常)、金矿氧化矿标志、构造标志(莲花山背斜、构造蚀变体(SBT)、峨眉山玄武岩组(P3β)的层间破碎蚀变带等构造高点)、地层标志(上二叠统峨眉山玄武岩组(P3β))、岩性标志(玄武质火山角砾岩、凝灰岩及岩石孔隙度较高、岩性复杂多样、富含铁且其顶板为厚层致密岩层的岩性组合)、蚀变标志(硅化、黄铁矿化、毒砂化、白云石化、粘土化)。(9)玄武质岩石也是卡林型金矿很好的赋矿围岩,莲花山背斜构造带乃至整个玄武岩分布区具有类似地质特征的区域均具有较好的卡林型金矿找矿前景,如砂厂、上寨及呼都等地是下一步寻找卡林型金矿的有利靶区。
杨清[7](2021)在《滇东北-黔西北地区铅锌矿床成矿作用研究》文中指出滇东北-黔西北地区位于扬子地台西南缘,该地区已发现超过400个铅锌矿床(点),其铅锌金属量超过20 Mt,是我国重要的铅锌多金属工业基地。目前对于这些铅锌矿床的成因研究仍然存在较大争议,尤其是在成矿时代、成矿流体来源、成矿物质来源和矿床形成机制等方面。本文以滇东北毛坪铅锌矿床、黔西北杉树林、筲箕湾、垭都和天桥铅锌矿床为研究对象,在全面介绍研究区区域地质背景、矿床地质特征的基础上,对这些矿床进行了系统的硫化物原位S同位素分析、微量元素分析、流体包裹体显微测温、流体包裹体群体成分分析、单个包裹体成分分析和闪锌矿Rb-Sr定年,以对滇东北-黔西北地区铅锌矿床的成矿时代、成矿物质及流体性质和来源进行了研究。在此基础上对研究区铅锌矿床的成矿类型进行划分,结合区域地质演化,详细分析了研究区铅锌成矿作用与重大地质事件的耦合关系,并建立了成矿模型。最后根据研究区铅锌矿床的地质特征、地球化学特征、成矿背景和控矿因素,系统总结了滇东北-黔西北地区铅锌矿床的成矿规律。取得主要认识如下:(1)滇东北-黔西北地区铅锌矿床矿体基本都赋存于震旦系-二叠系海相碳酸盐岩中,以白云岩为主。滇东北铅锌矿床主要受北东向逆断层控制,黔西北铅锌矿床主要受北西向逆断层控制。矿床矿体多呈脉状、透镜状和似层状产出,次为角砾状和网脉状。成矿期可主要划分为三个阶段:早期黄铁矿阶段,中期铅锌硫化物主成矿阶段和晚期碳酸盐阶段。金属矿物主要为闪锌矿、黄铁矿和方铅矿,脉石矿物主要见方解石、白云石和石英等。围岩蚀变以碳酸盐化和黄铁矿化为代表。(2)硫化物LA-ICPMS硫同位素分析显示,这些铅锌矿床δ34S值分布在10~23‰之间,富集重硫,且其分布特征表明沉淀的硫化物之间已经达到了硫同位素平衡。滇东北毛坪铅锌矿床成矿流体δ34S在19~22‰之间,成矿还原硫主要来自下伏震旦系灯影组和(或)寒武系地层中海相硫酸盐的热化学还原作用;黔西北地区铅锌矿床成矿流体δ34S为13~19‰,成矿还原硫可能具有多来源性,主要为赋矿地层和下伏震旦系或寒武系地层硫酸盐的混合来源。硫化物LA-ICPMS微量元素分析结果显示闪锌矿以富集Ge、Ga、Cd和Ag,贫Bi、Ni、Co、Ti和Tl为特征;黄铁矿相对富集Ni、Co和As,与典型MVT铅锌矿床中闪锌矿和黄铁矿微量元素特征相似。(3)该地区铅锌矿床成矿流体温度范围集中在120~250℃之间,盐度主要分布在7~14%(Na Cleqv)之间,属于中低温、中低盐度流体。流体包裹体成分较为复杂,气相主要为H2O、CO2和少量CH4,液相成分主要含有Na、Ca、K、Mg、Cl等。LA-ICPMS单个流体包裹体分析显示,成矿流体还具较高浓度的Li、Rb、Sr、Cs、Ba等元素;对比岩浆热液成矿流体、盆地卤水及变质卤水成分数据,发现滇东北和黔西北地区铅锌矿床的成矿流体都具有盆地卤水来源特征。(4)闪锌矿Rb-Sr年代学研究显示毛坪铅锌矿床成矿年龄为202.5±8.5Ma,处于晚三叠世-早侏罗世时期,晚于泥盆系赋矿地层。结合前人在研究区的研究成果,进一步约束了滇东北-黔西北地区铅锌矿床的形成时代。结合研究区铅锌矿床的地质特征、成矿流体性质及来源、成矿物质来源、微量元素特征和区域构造演化研究,本文认为滇东北-黔西北地区广泛分布的铅锌矿床属于MVT铅锌矿床,其成矿作用与印支期右江盆地的演化相耦合,是右江盆山挤压造山作用驱动下的大规模盆地流体迁移导致的。右江前陆盆地在中三叠世为浊积岩盆地阶段,是相对高温盆地卤水的准备期,产生了150~280℃相对较高温度的盆地卤水,最高温度为300~350℃;晚三叠世至早侏罗世的盆地消亡阶段,右江盆地自SE向NW隆起形成造山带,地形作用及构造挤压导致盆地热卤水向NW向大规模迁移。流体沿着NW向紫云-垭都断裂和中元古界褶皱基底与沉积地层之间的不整合面迁移,并沿途萃取了基底地层和沉积盖层中大量的成矿元素,最终在NW、NE、NNE向逆断层和褶皱虚脱部位沉淀金属硫化物而形成研究区内广泛分布且具有众多相似特征的铅锌矿床。(5)滇东北-黔西北地区铅锌矿床受地层、岩性、构造和岩相的多重控制。首先,矿床选择性的赋存于震旦系-二叠系地层中,且自南东部的黔西北地区到北西部的滇东北北部地区赋矿地层逐渐变老,但赋矿地层岩性一直为海相碳酸盐岩,并以白云岩为主;其次,区域性深大断裂、地区大断裂和矿床范围内的次级构造分别控制着成矿区总体范围、矿床分布和矿体产出特征。在成矿模式、成矿规律与成矿条件分析的基础上,综合岩相古地理特征、矿床地球化学以及已有矿床分布情况,本文认为黔西北垭都-蟒硐断裂带NW端找矿潜力较好,滇东北地区莲峰-巧家断裂至矿山厂-金牛厂断裂之间可能具有更好的找矿前景。
陶意[8](2020)在《诸广山地区棉花坑矿床铀成矿氧化还原条件研究》文中指出诸广山地区热液型铀矿床中广泛发育红色微晶石英脉型矿石,因含大量细小分散状赤铁矿而呈现红色,且该类型矿石品位通常与赤铁矿含量呈正相关,但赤铁矿与常见铀矿物沥青铀矿形成的氧化还原环境具有制约性,因此有必要开展铀成矿的氧化还原条件研究。本文以该区典型矿床棉花坑矿床为研究对象,运用年代学、矿物学、岩石地球化学、流体包裹体地球化学等方法和手段,对成矿时代、矿石矿物和蚀变矿物特征、成矿流体性质及其演化特征、铀成矿氧化还原条件等方面进行了系统研究和探讨,论文获得的主要认识如下:(1)将棉花坑矿床铀成矿作用划分为早晚两个期次,成矿早期特征矿物组合为红色微晶石英-赤铁矿-沥青铀矿,成矿晚期特征矿物组合为灰色微晶石英-黄铁矿-萤石-沥青铀矿。运用沥青铀矿LA-ICP-MS原位微区U-Pb定年技术获得早、晚两个期次成矿年龄分别为84.7±1.2Ma和65.3±1.6Ma。铀成矿作用受白垩纪至古近纪区域岩石圈伸展这一地球动力学控制。(2)运用电子探针、LA-ICP-MS原位微区分析技术对两种类型矿石中沥青铀矿成分分析,发现早期红色矿石中沥青铀矿以结晶差、与铁氧化物共生,高Si、Pb、Al元素,δCe正异常,重稀土元素富集为特征;晚期灰色矿石中沥青铀矿以结晶好、与黄铁矿共生,富U、Fe、Ca、Na、Mn、P元素,δEu负异常,轻稀土元素富集为特征。前者形成于氧化环境,后者形成于还原环境。(3)根据成矿阶段和矿物形态差异将棉花坑矿床黄铁矿分为6种类型(Ⅰ~Ⅵ型):早期铀矿化前期立方体状和五角十二面体状黄铁矿(Ⅰ型)富集Li、Co、Cu,形成温度高,铀含量低。早期铀矿化峰期立方体状黄铁矿(Ⅱ型)亏损Fe、S、Sr,富集U、Pb、Sm、Nd、Cu、Co、Ti等元素,稀土元素含量低。晚期铀矿化早阶段黄铁矿具有自形五角十二面体(Ⅲ型)、半自形立方体状(Ⅳ型)两种晶形,其地球化学特征相似,富集K、P、As、Tl、Au、Sb等元素,亏损Nb、Zr、Hf、Ba、Sr等元素,稀土元素含量极低。晚期铀矿化晚阶段有脉状(Ⅴ型)、胶状黄铁矿(Ⅵ型)两种,强烈亏损Fe、S,富集U、Pb、As、Th、Sm、Nd、Bi等元素,稀土元素含量高。扫描电镜结果显示沥青铀矿与黄铁矿接触部位具有反应边结构,成分上渐变式过渡,愈靠近沥青铀矿,黄铁矿具有Fe、S含量降低,U、Pb、REE、Co、Ni、As、Se元素含量增高特征。黄铁矿可还原成矿热液中的U6+形成沥青铀矿,其中S-为主要的还原剂,Fe2+也可能参与该还原过程。(4)将棉花坑矿床红色矿石中赤铁矿分为矿前期斑状、成矿期云雾状、成矿期浸染状、矿后期网脉状4种类型,与沥青铀矿密切相关的赤铁矿结晶差,粒径小,主要呈云雾状。成矿前斑状赤铁矿为蚀变长石、黑云母的产物,富含Fe、Al、Mg、K、LREE等元素,亏损Ba、Sr、Nb、Ta、Zr、Hf等元素;与沥青铀矿共生的云雾状赤铁矿富含Fe、Si、Al、U、Pb、Li、Rb等元素,具有明显δCe正异常。(5)运用显微测温技术和激光拉曼测试分析对流体包裹体成分研究发现,早期铀矿化成矿前流体为高温(360℃~400℃)、中等密度(平均0.9g/cm3)、低盐度(6.0~9.0wt%Na Cl)流体;红色矿石中流体包裹体气相中富含O2,流体为中高温(240-320℃)、中等密度(平均0.826g/cm3)、低盐度(5.0~9.0wt%Na Cl);灰色矿石中共生的石英、萤石包裹体气相中富含大量H2、CH4、CO2,成矿流体为中高温(240-300℃)、中等密度(平均0.869g/cm3)、低盐度(5.0~8.0wt%Na Cl)流体;晚期铀矿化矿后期为中低温(120~180℃)、中等密度(平均0.918g/cm3)、低盐度(2.0~4.0wt%Na Cl)流体。从早期成矿前至晚期成矿后,成矿流体具有温度、盐度降低,密度增大的趋势。早期成矿流体为氧化性流体,晚期成矿流体为还原性流体。(6)棉花坑矿床早期深源还原性成矿流体混合了较多的大气降水,成矿流体呈氧化性,形成红色微晶石英脉型铀矿化;晚期深源还原性成矿流体混合了较少的大气降水,成矿流体保持还原性,形成灰色微晶石英脉型铀矿化。沥青铀矿并非只能形成于强还原环境中,也可形成于氧化环境中,还原环境不是沥青铀矿沉淀富集的必要条件。还原环境更加有利于沥青铀矿富集沉淀,更易形成富矿。
李旋旋[9](2020)在《安徽庐枞盆地酸性蚀变岩帽形成机制及成矿指示研究》文中研究表明长江中下游成矿带是中国东部重要的多金属成矿带,对其地质条件、成矿规律和成矿规模的研究较为深入,取得了公认的理论研究成果。长江中下游地区长期的构造、岩浆和成矿作用形成了多个断垄区和断凹区,发育有玢岩型、斑岩-矽卡岩型、热液脉型铜铁金多金属矿床。庐枞中生代陆相火山岩盆地位于长江中下游断凹区,地处扬子板块的北缘,郯庐断裂带的南段,具有丰富的金属矿产如玢岩型铁矿床、热液脉型铜铅锌矿床和非金属矿产资源如明矾石矿床等,其中,位于盆地西北部最大的矾山明矾石矿床构成了该盆地内典型的酸性蚀变岩帽,该巨型酸性蚀变岩帽的成因及其与盆地内金属矿床之间的关系亟待进行研究解决。因此,本文主要选取庐枞盆地矾山酸性蚀变岩帽为研究对象,在充分收集、整理前人研究成果的基础上,通过大量的野外地质调查、样品采集和室内分析测试工作,综合运用蚀变岩石学、矿物学、同位素年代学、流体包裹体地球化学、同位素地球化学、矿物原位高精度微区元素分析等方法,对矾山酸性蚀变岩帽开展系统的地质、地球化学、成因及找矿指示研究。矾山酸性蚀变岩帽主要由砖桥组火山岩蚀变而成,通过短波红外光谱分析、扫描电镜、X-射线衍射分析发现,从大矾山明矾石矿区向西南和南部砖桥镇附近蚀变具有水平分带特征,依次发育硅化、黄铁矿化、高级泥化、泥化蚀变,其中,硅化主要以多孔状和块状石英为主,多孔状石英分布在大矾山矿区,块状石英主要分布在牛头山地区;黄铁矿化以含铁矿物为主,如黄铁矿、赤铁矿、针铁矿等,在大矾山矿区分布较广;高级泥化蚀变主要以明矾石、石英、高岭石、地开石、叶腊石、珍珠陶土等矿物为主,亦分布在大矾山矿区;泥化蚀变以石英、高岭石、伊利石/蒙脱石、伊利石、黄钾铁矾的矿物组合为特征,主要在远离大矾山矿区的东南地区较为发育。基于详细的岩石学和矿物学观察,该区形成酸性蚀变岩帽的流体可分为热液早阶段、热液晚阶段及表生期三个阶段,明矾石在每个期次或阶段均有存在。热液早阶段产于安山岩中的IA1型明矾石和产于凝灰岩中浸染状IA2型明矾石广泛分布在大矾山明矾石矿区的地表及深部,是流体交代围岩中长英质矿物的产物;热液晚阶段充填在开放空间的ⅠB型明矾石分布在大矾山矿区;而表生期由氧化作用形成的Ⅱ型明矾石在地表零散广泛分布。根据明矾石矿物含量和全岩地球化学特征,将酸性蚀变岩帽中的蚀变岩分为硅质蚀变岩、明矾石蚀变岩、粘土蚀变岩三种,分别对应牛头山地区和大矾山矿区的硅化、大矾山矿区的高级泥化、外围的泥化蚀变。三种岩性中元素含量变化特征逐渐不明显,代表了水岩反应程度逐渐减弱,流体的酸性逐渐被围岩中和。对明矾石和黄铁矿开展的稳定同位素分析结果表明,矾山酸性蚀变岩帽中热液明矾石主要形成于180~220℃的岩浆热液环境下,流体主要来自于混有少量大气水的岩浆水。IA型明矾石40Ar-39Ar定年厘定了热液明矾石形成于131Ma,亦即矾山酸性蚀变岩帽的形成时代,并在33Ma时(金红石原位LA-ICP MS U-Pb定年)有表生氧化作用的叠加。矾山酸性蚀变岩帽形成于岩石圈减薄、伸展的构造背景下,是长江中下游成矿带第二期岩浆热液成矿作用的产物。通过明矾石的电子探针分析和激光等离子质谱分析,热液期由早到晚明矾石中Na、Ca、Sr、Ba含量逐渐降低,表明围岩和温度均是影响因素,而温度起到关键作用。LREE、U含量的逐渐降低和p XRF分析中Cl含量的逐渐升高,表明在蚀变过程中流体虽相对富氯,但元素却逐渐亏损。结合不同热液阶段流体中元素含量逐渐减少的化学特征和流体包裹体结果显示的蚀变流体即为原始流体的特征,表明形成矾山酸性蚀变岩帽的热液蚀变流体活动方式较为单一。由深部岩浆分异而来的热液流体在上升过程中发生SO2歧化反应,于浅部形成多孔状石英和明矾石,整个阶段流体从弱酸、高温经过强氧化性、强酸、温度降低到低温和中性环境的方向演化。蚀变过程中,较低的温度条件不利于金属元素溶解于络合物中,成矿物质于深部沉淀,潜在矿床位于酸性蚀变岩帽的底部。通过矿物组合、流体环境、硫同位素特征等方面的详细对比表明,庐枞矾山酸性蚀变岩帽与盆地内的玢岩铁矿成矿系统无关。矾山酸性蚀变岩帽与国内外典型的富矿酸性蚀变岩帽,如福建紫金山高硫型铜金矿床、菲律宾Lepanto高硫型矿床-Far Southeast斑岩矿床等,在大地构造背景、地质特征、矿物地球化学特征、流体特征等方面具有众多的相似性,表明庐枞盆地可能存在高硫型浅成低温热液成矿系统,与矾山酸性蚀变岩帽有关的岩浆岩具有较大的成矿潜力。矾山酸性蚀变岩帽中明矾石短波红外光谱1480nm峰值、全岩地球化学特征、明矾石地球化学特征等,在空间上对热液蚀变中心或矿化方向具有一定的指示作用。这些特征表明,金银矿化可能位于大矾山明矾石矿床的深部,而铜矿化可能位于大矾山明矾石矿床的东北部。对众多明矾石地球化学数据的详细分析和验证,Ca+Sr+Ba-Na/(Na+K)图解可以用来判断明矾石在酸性蚀变岩帽中所处的空间位置(如流体通道或水平区域位置),或酸性蚀变岩帽是否具有找矿潜力。结合庐枞盆地其他明矾石矿床的地质特征、矿物学特征,初步为在庐枞盆地的巴家滩-雾顶山-井边-磨盘山-石门庵、矾母山和钱铺一带寻找斑岩-浅成低温热液矿床提供了方向。
苏治坤[10](2019)在《康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示》文中认为扬子西缘康滇地区是全球范围内一个重要的元古宙铁铜多金属成矿带。根据早期的勘探资料可推算出至少有10亿吨铁和6百万吨铜金属。该区自上世纪60年代几个典型铁铜矿床被发现以来,就引起大量学者和地质单位的关注。虽然迄今经过半个世纪的开采和研究,但目前对这些铁铜矿床的描述性地质模型(包括原岩组成,热液蚀变规律,控矿要素等)、成矿时代及大地构造背景、成矿及改造过程等关键科学问题仍然存在不少问题,从而制约了对矿床成因和区域成矿规律的总结。本论文选取区域最典型的、规模最大的大红山铁-铜-(金)矿床作为研究对象,通过总结分析前人资料和详细的野外地质观察,系统总结了该矿床热液蚀变特征和蚀变相组成。在精细的矿物学研究基础上,借助多种同位素年代学(Sm-Nd;Re-Os;U-Pb)测试方法,结合矿物原位同位素(S-B-Nd)分析,尝试厘清大红山铁铜矿床形成时代及改造历史,查明成矿物质来源、成矿(或改造)流体性质,深入探讨并总结了该矿床的成因模式,力求为康滇地区及我国同类型矿床的矿床成因和成矿规律研究提供有益借鉴。论文取得的主要认识和成果如下:大红山铁铜矿床的赋矿围岩大红山群是一套下元古界变火山-沉积地层,时代为1711-1665 Ma。通过原岩特征恢复,沉积地层沉积相自下而上由河流-三角洲相过渡到滨浅海潮坪碳酸盐相,主要岩性包括含砾砂岩–砂岩–粉砂岩–泥质粉砂岩或泥质岩–互层状含碳泥质粉砂岩和白云岩(IASD)–砂质白云岩–白云岩序列。沉积地层中夹杂有少量的火山岩,火山岩具有双峰式特征,出露以基性火山岩为主,有少量酸性岩已完全蚀变成石英钠长岩。这套地层在成矿过程在发生了强烈的热液蚀变作用,导致岩石矿物组成和面貌有很大差异,结合详细的野外观察、光学显微镜、显微镜冷阴极发光、以及X-射线元素扫面等技术论文系统恢复了赋矿地层的原岩特征,证实前人拟定的“红山组”800米厚的“细碧角斑岩系”为强烈蚀变并部分角砾岩化的沉积地层,仅含少量火山岩。条带状铁铜矿的关键层位石榴石云母片岩的原岩岩性主要为互层状含碳泥质粉砂岩和白云岩(IASD)。大红山矿床的主要矿体根据产状和矿石矿物组合差异可分为两类:产于石榴石云母片岩中的条带状-浸染状铁铜矿体和产于“红山组”地层中的块状铁矿体。铁铜矿石中的主要矿物组合为磁铁矿+黑云母+黄铁矿+黄铜矿+菱铁矿+绿泥石组合;铁矿石的主要矿物组合为钠长石+磁铁矿+赤铁矿+石英组合。详细的野外填图和岩相学研究表明大红山矿床中不同岩性中发育类似的热液蚀变相演化。热液蚀变从高温到低温的演化趋势为:Na–(Na)-Ca-Fe–HT K-Fe–LT K-Fe–LT Ca-Mg。与磁铁矿成矿有关的主要蚀变相为HT Ca-Fe和HT K-Fe两类蚀变;而与铜硫化物沉淀有关的蚀变主要为LT K-Fe蚀变。系统采集矿床中硫化物和电气石示踪物质来源及流体演化。根据产状硫化物可大致分为三个世代:PyI为HT Ca-Fe阶段包裹于磁铁矿内部的少量的黄铁矿包体;PyII+CcpII为LT K-Fe阶段大规模沉淀的硫化物,根据围岩进一步划分为II-1(砂岩或砂质白云岩)和II-2(IASD);Py III+CcpIII则产于后期活化切穿片理的粗脉状石英-方解石脉中。PyI具有低δ34S值范围(-2.2‰到5.3‰)、低Se/S比值和低Co/Ni比值,表明该阶段成矿流体以岩浆流体为主。流体系统的Se/S比值随后升高,同时伴随有PyII+CcpII大规模沉淀。岩浆流体在砂岩以及砂质白云岩中占主导地位;而在主要赋矿围岩的IASD中,双峰式分布的硫化物δ34S值(1.0‰到5.1‰和13.5‰到15.8‰)暗示了盆地卤水和岩浆流体的混合可能对大红山硫化物大规模的沉淀起到了重要作用。大红山硫化物中特征的高Co-Ni含量和Co/Ni比值暗示了成矿流体具有基性岩浆岩的亲缘性。晚期活化脉中的黄铁矿的化学成分和S同位素组成总体与原生矿化类似,表明活化流体S及物质来源具有原生矿石继承性。电气石形成于大红山铁铜矿床中从早期钠化到最晚期LT Ca-Mg蚀变的5个主要蚀变和成矿阶段。电气石主要成分为铁电气石-镁电气石序列,属于碱族电气石。电气石的成分受流体和围岩的综合影响,受水/岩比控制。钠化阶段的电气石δ11B值为-14.7‰到-7‰,与随后的HT Ca-Fe阶段的δ11B值范围一致(-12.3‰到-5.7‰)。高温K-Fe阶段(-10.7‰到-0.5‰)和LT K-Fe阶段(-10.7‰到-2.2‰)的电气石具有显着升高的δ11B值范围。最晚期的的电气石-石英-方解石脉则给出了最高的+2.9‰到+5.9‰的范围。大红山中电气石硼同位素的显着分馏不可能仅仅依靠瑞利分馏形成,而是指示了岩浆流体和盆地卤水不同流体间的混合作用。对应阶段的O-S同位素也支持流体混合的存在。在钠化和磁铁矿形成阶段成矿流体以岩浆流体为主,而在随后的高温K-Fe阶段和硫化物大规模沉淀时有大量的盆地流体加入。电气石的系统硼同位素研究表明大红山铁铜矿床中的成矿流体最开始起源于岩浆源区,但非岩浆流体的加入可能对触发具有经济价值的硫化物矿化具有重要意义。对大红山矿床产出的各类副矿物进行了系统的年代学测试,建立了大红山矿床的年代学框架。与铜成矿紧密共生的热液锆石给出U-Pb年龄为1653±18 Ma,这一年龄与利用稀土矿物获得的Sm-Nd误差等时线年龄1654±55 Ma的年龄一致,也与通过脉岩穿插关系所限定的年龄一致,这些年龄一致表明大红山矿床的主成矿期在1.65 Ga。然而,多种同位素定年手段,包括硫化物Re-Os,副矿物U-Pb,以及全岩和稀土矿物Sm-Nd同位素分析则发现大红山矿床形成后经历至少了5期流体的改造作用,分别为(1)1441±58 Ma与区域岩浆流体活动,(2)1026±15Ma与区域岩浆流体活动,(3)910±23 Ma940±12Ma的大红山局部构造-岩浆(?)事件,(4)872±12 Ma876±2 Ma的区域岩浆流体活动,和(5)799±13Ma830±5 Ma与区域大规模岩浆-变质作用有关的流体活动。与主期成矿事件同时代的双峰式岩浆岩的地球化学特征,以及赋矿裂谷盆地火山-沉积地层的演化过程,表明矿床形成与哥伦比亚超大陆裂解有关,大地构造背景为克拉通边缘的大陆裂谷沉积盆地,而成矿后的改造事件可与区域多期次的岩浆-构造-热事件相对应。为了进一步查明成矿期成矿物质来源和成矿后多期热液叠加事件有无新物质加入的可能,本文系统分析矿石全岩和主要稀土矿物(磷灰石、独居石及褐帘石)的Sm-Nd同位素组成。结合相对应的U-Pb年代学体系,从REE的角度,鉴别出仅在1.45 Ga有少量新生成矿物质的加入,而大量的晚中-早新元古代稀土矿物均为1.65 Ga的矿石再活化,并没有新的成矿物质加入。因此从REE的角度,这些稀土矿物如独居石、褐帘石等的年龄(1.04–0.80 Ga)并不能代表独立成矿事件,而是记录了流体叠加/改造活动,指示了稀土元素在矿床内部的重新分布的过程,表明前寒武纪矿床中的稀土元素及其他成矿元素在后期地质事件中可能发生活化和改造作用。
二、黄铁矿微量元素地球化学特征及其对成矿流体性质的指示(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、黄铁矿微量元素地球化学特征及其对成矿流体性质的指示(论文提纲范文)
(1)黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景(论文提纲范文)
指导教师对博士论文的评阅意见 |
指导小组对博士论文的评阅意见 |
答辩决议书 |
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 国内外研究现状 |
1.2.2 研究区研究现状 |
1.3 存在的问题及选题依据 |
1.4 研究思路 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.4.3 技术路线 |
1.4.4 项目依托与实物工作量 |
第2章 区域地质背景 |
2.1 区域地层概况 |
2.1.1 元古界 |
2.1.2 古生界 |
2.1.3 中生界 |
2.1.4 新生界 |
2.2 区域岩浆岩概况 |
2.2.1 元古代岩浆作用 |
2.2.2 古生代岩浆作用 |
2.2.3 中生代岩浆作用 |
2.2.4 新生代岩浆作用 |
2.3 区域构造特征 |
2.3.1 褶皱构造 |
2.3.2 断裂构造 |
2.4 区域矿产资源概况 |
2.5 区域地球动力学演化 |
2.6 小结 |
第3章 矽卡岩型铜金、金和铁铜多金属矿床地质特征 |
3.1 老柞山矽卡岩型铜金矿床 |
3.1.1 矿区地质特征 |
3.1.2 矿床地质特征 |
3.2 大安河矽卡岩型金矿床 |
3.2.1 矿区地质特征 |
3.2.2 矿床地质特征 |
3.3 二股矽卡岩型铁铜多金属矿床 |
3.3.1 矿区地质特征 |
3.3.2 矿床地质特征 |
3.4 小结 |
第4章 成矿流体特征 |
4.1 实验样品及分析测试方法 |
4.1.1 实验样品 |
4.1.2 显微测温方法 |
4.1.3 激光拉曼成分分析 |
4.1.4 氢氧同位素测试 |
4.2 流体包裹体研究 |
4.2.1 老柞山矽卡岩型铜金矿床 |
4.2.2 大安河矽卡岩型金矿床 |
4.2.3 二股矽卡岩型铁铜多金属矿床 |
4.3 H-O同位素 |
4.4 小结 |
第5章 同位素地质年代学与成岩成矿时代 |
5.1 实验样品及分析测试方法 |
5.1.1 LA-ICP-MS锆石U-Pb测年样品、方法 |
5.1.2 石榴石LA-MC-ICP-MS U-Pb测年样品、方法 |
5.2 实验结果 |
5.2.1 老柞山矽卡岩铜金多金属矿床 |
5.2.2 大安河矽卡岩型金矿床 |
5.2.3 二股矽卡岩型铁铜多金属矿床 |
5.3 成岩成矿时代 |
5.3.1 老柞山矽卡岩型铜金矿床 |
5.3.2 大安河矽卡岩型金矿床 |
5.3.3 二股矽卡岩型铁铜多金属矿床 |
5.4 小结 |
第6章 矿物学与岩石地球化学特征 |
6.1 分析测试方法 |
6.1.1 主量元素和微量元素 |
6.1.2 Sr-Nd-Pb-Hf同位素 |
6.1.3 电子探针分析 |
6.2 矿区侵入岩的岩相学、地球化学特征 |
6.2.1 老柞山矽卡岩型铜金矿床 |
6.2.2 大安河矽卡岩型金矿床 |
6.2.3 二股矽卡岩型铁铜多金属矿床 |
6.3 矿区侵入岩的矿物学特征 |
6.3.1 矿相学特征 |
6.3.2 地球化学特征 |
6.4 矽卡岩矿物学特征 |
6.4.1 老柞山矽卡岩型铜金矿床 |
6.4.2 大安河矽卡岩型金矿床 |
6.4.3 二股矽卡岩型铁铜多金属矿床 |
6.5 小结 |
第7章 岩浆对成矿的制约及成矿动力学背景、模式 |
7.1 岩浆属性及对成矿的制约 |
7.1.1 岩石成因与源区性质 |
7.1.2 岩浆作用对成矿的制约 |
7.2 特征矽卡岩矿物对成矿的指示 |
7.3 成岩成矿动力学背景与模式 |
7.3.1 成岩成矿动力学背景 |
7.3.2 成岩成矿动力学模式 |
7.4 含矿流体性质与成矿物质来源 |
7.4.1 含矿流体性质、起源与演化 |
7.4.2 成矿物质来源 |
7.5 流体演化、成矿机理与成矿模式 |
7.5.1 流体演化与成矿机理 |
7.5.2 剥蚀与改造 |
7.5.3 成矿模式 |
第8章 结论 |
8.1 取得的主要成果 |
8.2 主要创新点 |
8.3 存在的问题 |
参考文献 |
附表 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(2)诸广南长江地区花岗岩型铀矿成矿流体作用研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题依据、目的及意义 |
1.1.1 选题依据 |
1.1.2 选题目的 |
1.1.3 选题意义 |
1.2 研究现状及存在的问题 |
1.2.1 国内外铀矿床流体作用研究现状 |
1.2.2 长江地区铀矿床研究现状 |
1.2.3 存在的问题 |
1.3 研究的内容方法和技术路线 |
1.3.1 研究的内容 |
1.3.2 研究的方法及技术路线 |
1.4 主要完成工作量 |
1.5 论文主要创新成果 |
2 区域地质概况 |
2.1 区域地层 |
2.2 区域岩浆岩 |
2.3 区域构造 |
2.3.1 区域构造发展史 |
2.3.2 长江地区构造特征 |
3 典型矿床地质 |
3.1 棉花坑矿床 |
3.1.1 矿区地质特征 |
3.1.2 矿体特征和矿石组构 |
3.1.3 围岩蚀变 |
3.2 书楼丘矿床 |
3.2.1 矿区地质特征 |
3.2.2 矿体特征和矿石组构 |
3.2.3 围岩蚀变 |
3.3 油洞地区铀矿床矿床地质 |
3.3.1 油洞铀矿床矿区地质特征 |
3.3.2 油洞矿床矿体特征和矿石组构 |
3.3.3 长排地区铀矿床矿床地质特征 |
3.3.4 长排地区矿体特征和矿石组构 |
3.3.5 长排地区的围岩蚀变特征 |
3.4 水石矿床 |
3.4.1 矿区地质特征 |
3.4.2 矿体特征和矿石组构 |
3.4.3 蚀变特征 |
3.5 “长江1 号”钻探成果和论文采样情况 |
3.5.1 “长江1 号”钻探成果 |
3.5.2 论文采样情况 |
4 成矿流体组成与性质 |
4.1 蚀变分带和成矿阶段 |
4.1.1 蚀变分带 |
4.1.2 成矿期次和成矿阶段 |
4.2 流体包裹体特征研究 |
4.2.1 样品特征及试验方法 |
4.2.2 棉花坑矿床的流体包裹体特征 |
4.2.3 书楼丘矿床的流体包裹体特征 |
4.2.4 长排地区铀矿床的流体包裹体特征 |
4.2.5 水石矿床的流体包裹体特征 |
4.3 流体包裹体特征与成矿流体 |
4.3.1 成矿流体的温度盐度和压力 |
4.3.2 流体包裹体特征与成矿流体的演化 |
4.4 蚀变岩石和矿石的化学成分与成矿流体作用 |
4.4.1 样品特征和测试方法 |
4.4.2 元素质量平衡的计算 |
4.4.3 铀矿化蚀变岩石元素地球化学特征 |
4.4.4 元素地球化学活动性规律和意义 |
4.5 小结 |
5 成矿流体的来源 |
5.1 H-O同位素特征 |
5.1.1 分析样品及分析方法 |
5.1.2 H-O同位素特征 |
5.1.3 H-O同位素演化特征 |
5.2 C-O同位素特征 |
5.2.1 分析样品及分析方法 |
5.2.2 C-O同位素特征 |
5.2.3 C-O同位素演化特征 |
5.3 其他同位素特征 |
5.3.1 脉石矿物的Rb、Sr同位素特征 |
5.3.2 稀有气体同位素研究 |
5.4 热液蚀变伊利石的H-O同位素特征 |
5.4.1 样品特征和分析方法 |
5.4.2 伊利石X射线粉晶衍射特征和H-O同位素特征 |
5.4.3 伊利石H-O同位素分析 |
5.5 成矿流体演化与成矿作用 |
5.5.1 成矿流体演化 |
5.5.2 成矿流体演化与成矿作用 |
5.6 小结 |
6 铀成矿作用与成矿模式 |
6.1 成矿流体演化特征和铀成矿关系 |
6.2 铀成矿模式 |
7 结论 |
参考文献 |
致谢 |
附录 |
(3)安徽蚌埠隆起金矿床成矿作用及成矿模式研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
第一章 引言 |
1.1 选题依据及意义 |
1.2 研究现状 |
1.2.1 造山型金矿床研究现状 |
1.2.2 胶东金矿床研究现状 |
1.2.3 蚌埠隆起金矿床研究现状 |
1.3 存在问题 |
1.4 研究内容及技术方法 |
1.4.1 研究内容 |
1.4.2 技术方法 |
1.5 完成工作量 |
1.6 主要成果和创新点 |
第二章 区域地质特征 |
2.1 大地构造位置 |
2.2 地层 |
2.2.1 上太古宇 |
2.2.2 元古宇 |
2.2.3 中生界白垩系 |
2.2.4 第三系 |
2.2.5 第四系 |
2.3 构造 |
2.3.1 东西向构造 |
2.3.2 北北东向构造 |
2.4 岩浆岩 |
2.4.1 古元古代岩浆岩 |
2.4.2 侏罗纪岩浆岩 |
2.4.3 白垩纪岩浆岩 |
2.5 区域矿产资源 |
第三章 破碎蚀变岩型金矿床 |
3.1 矿床地质特征 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.1.4 矿体特征 |
3.1.5 矿石特征 |
3.1.6 可见金赋存状态 |
3.1.7 围岩蚀变 |
3.1.8 成矿期次划分 |
3.2 成岩成矿时代 |
3.2.1 赋矿地层年代学 |
3.2.2 岩浆岩成岩时代 |
3.2.3 锆石Hf同位素特征 |
3.2.4 黄铁矿Rb-Sr年龄 |
3.2.5 讨论 |
3.3 矿床地球化学 |
3.3.1 流体包裹体研究 |
3.3.2 氧同位素温度计 |
3.3.3 石英Ti温压计 |
3.3.4 黄铁矿地球化学特征 |
3.3.5 金成矿作用 |
第四章 石英脉型金矿床 |
4.1 典型矿床地质特征 |
4.1.1 矿床及矿体地质 |
4.1.2 围岩蚀变 |
4.1.3 矿石特征 |
4.1.4 成矿阶段和成矿期次 |
4.2 矿床地球化学 |
4.2.1 黄铁矿地球化学 |
4.2.2 石英地球化学特征 |
4.2.3 碳酸盐碳-氧同位素 |
4.2.4 金成矿作用 |
第五章 蚌埠隆起金成矿模式 |
5.1 区域年代学 |
5.2 成矿流体性质 |
5.3 成矿流体和物质来源 |
5.4 金沉淀机制 |
5.5 成矿模式 |
第六章 与胶东地区对比研究 |
6.1 区域地质特征对比 |
6.1.1 地层 |
6.1.2 岩浆岩 |
6.1.3 构造 |
6.2 矿床地质特征对比 |
6.3 矿床地球化学特征对比 |
6.3.1 成矿时代对比 |
6.3.2 成矿流体性质对比 |
6.3.3 成矿流体和物质来源对比 |
6.4 蚌埠隆起金矿床动力学模式及找矿方向 |
6.4.1 蚌埠隆起金矿床动力学模式 |
6.4.2 蚌埠隆起找矿方向 |
第七章 主要结论 |
参考文献 |
附表 |
攻读博士学位期间学术活动及成果情况 |
(4)东秦岭三道庄矽卡岩型钼钨矿床矿物学特征及成矿作用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景及意义 |
1.2 矿物学对矽卡岩型矿床成矿作用指示的研究现状 |
1.3 三道庄矽卡岩型钼钨矿床研究现状 |
1.4 研究内容与技术路线 |
1.5 论文相关工作量 |
第二章 区域地质 |
2.1 区域地层 |
2.2 区域岩浆岩 |
2.3 区域构造 |
2.4 区域矿产特征 |
第三章 矿床地质特征 |
3.1 地层 |
3.2 岩浆岩 |
3.3 构造 |
3.4 热液蚀变 |
3.5 矿体特征 |
3.6 矿石特征 |
3.7 矿物特征 |
3.8 成矿期次 |
第四章 研究样品及测试方法 |
4.1 研究样品 |
4.2 测试方法 |
第五章 三道庄钼钨矿床矿物成分特征 |
5.1 脉石矿物 |
5.2 金属矿物 |
第六章 矿物成分对矽卡岩型钼钨矿床成矿作用指示 |
6.1 矿物成分对成矿作用过程温度变化的指示 |
6.2 矿物成分对成矿作用过程挥发份变化的指示 |
6.3 矿物成分对成矿作用过程氧逸度变化的指示 |
6.4 矿物成分对成矿流体演化的指示 |
第七章 主要结论和存在问题 |
7.1 主要结论 |
7.2 存在问题 |
致谢 |
参考文献 |
个人简历 |
(5)青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 选题意义及依托项目 |
1.2 研究区位置及概况 |
1.3 研究现状及存在问题 |
1.3.1 青海东昆仑西段研究现状 |
1.3.2 卡尔却卡-阿克楚克赛地区研究现状 |
1.3.3 主要成矿类型研究现状 |
1.3.4 存在主要问题 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.4.3 分析测试方法 |
1.5 完成的主要实物工作量 |
1.6 取得主要认识 |
第2章 区域地质背景 |
2.1 大地构造位置及构造分区 |
2.2 区域地层 |
2.2.1 古-中元古界 |
2.2.2 新元古界 |
2.2.3 下古生界 |
2.2.4 上古生界 |
2.2.5 中生界 |
2.2.6 新生界 |
2.3 区域构造 |
2.3.1 昆南断裂 |
2.3.2 昆中断裂 |
2.3.3 昆北断裂 |
2.3.4 柴达木南缘断裂 |
2.3.5 阿尔金断裂 |
2.3.6 哇洪山-温泉断裂 |
2.3.7 黑山-那陵格勒河断裂 |
2.4 区域岩浆岩 |
2.4.1 前晋宁期 |
2.4.2 晋宁期 |
2.4.3 加里东期 |
2.4.4 海西-印支早期 |
2.4.5 印支期晚 |
2.5 区域矿产 |
第3章 东昆仑造山带构造演化研究 |
3.1 始太古代-古元古代古陆核的证据 |
3.2 中-新元古代岩浆-构造事件 |
3.2.1 柴达木南缘岩浆-构造事件——“金水口岩群”时代与构造属性 |
3.2.2 昆南岩浆-构造事件——万宝沟大洋玄武岩高原形成 |
3.3 加里东早期构造体系的形成 |
3.3.1 柴达木南缘沟-弧-盆体系(西太平洋型活动陆缘) |
3.3.2 万宝沟玄武岩高原沟-弧体系 |
3.4 加里东晚期-海西早期万宝沟玄武岩拼贴-洋壳板片断离 |
3.4.1 洋壳深俯冲-板片断离-软流圈上涌作用 |
3.4.2 万宝沟玄武岩的拼贴 |
3.5 海西晚期-印支早期安第斯型造山活动 |
3.6 印支晚期-燕山期岩石圈拆沉和底侵作用 |
3.7 燕山末期-喜马拉雅期区域隆升作用 |
第4章 典型矿床研究 |
4.1 阿克楚克赛岩浆铜镍硫化物矿床 |
4.1.1 矿区地质特征 |
4.1.2 矿床地质特征 |
4.1.3 成岩成矿时代与地球化学特征 |
4.1.4 同位素特征 |
4.1.5 岩浆源区与演化 |
4.1.6 成矿作用研究 |
4.2 阿克楚克赛斑岩型矿化(点) |
4.2.1 矿床地质特征 |
4.2.2 岩石年代学及与地球化学特征 |
4.2.3 成矿作用研究 |
4.3 卡尔却卡A区中高温热液脉-隐爆角砾岩壳型矿床 |
4.3.1 矿区地质特征 |
4.3.2 矿床地质特征 |
4.3.3 岩石年代学及地球化学研究 |
4.3.4 矿床地球化学特征 |
4.3.5 成矿年代学研究 |
4.3.6 成矿作用研究 |
4.4 卡尔却卡B区矽卡岩型矿床 |
4.4.1 矿区地质特征 |
4.4.2 矿床地质特征 |
4.4.3 侵入岩年代学及地球化学特征 |
4.4.4 矿床地球化学特征 |
4.4.5 成矿年代学研究 |
4.4.6 成矿作用研究 |
第5章 区域成矿规律 |
5.1 成矿地质条件 |
5.1.1 地层条件 |
5.1.2 构造条件 |
5.1.3 岩浆岩条件 |
5.2 矿床类型与空间分布 |
5.2.1 岩浆铜镍硫化物矿床 |
5.2.2 斑岩型矿床 |
5.2.3 矽卡岩型-中高温热液脉型矿床 |
5.3 成矿时代、构造背景与成矿模式 |
5.3.1 成矿时代划分 |
5.3.2 构造背景与动力学模型 |
5.4 矿床区域保存条件及矿床空间分布 |
5.4.1 昆中南带保存条件 |
5.4.2 昆中北带保存条件 |
5.5 找矿潜力及找矿方向 |
5.5.1 岩浆铜镍硫化物矿床 |
5.5.2 岩浆热液型铜铅锌多金属矿床 |
结论 |
参考文献 |
取得的科研成果 |
致谢 |
(6)贵州西南部架底和大麦地玄武岩中金矿床成矿过程研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题依据及意义 |
1.2 项目依托 |
1.3 研究现状及拟解决的关键问题 |
1.3.1 国内外研究进展 |
1.3.2 拟解决的关键问题 |
1.4 研究内容、研究目标及研究方案 |
1.4.1 研究内容 |
1.4.2 研究目标 |
1.4.3 研究方案 |
1.5 主要创新点 |
1.6 完成的主要工作量 |
第二章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地层 |
2.3 区域构造 |
2.4 区域岩浆活动 |
2.5 区域地球物理特征 |
2.6 区域地球化学特征 |
2.7 区域矿产 |
第三章 矿床地质特征 |
3.1 架底金矿 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 矿体特征 |
3.2 大麦地金矿 |
3.2.1 地层 |
3.2.2 构造 |
3.2.3 矿体特征 |
第四章 热液蚀变及矿物生成顺序 |
4.1 成矿前期矿物 |
4.2 成矿期矿物和热液蚀变 |
4.3 氧化期矿物 |
4.4 小结 |
第五章 元素地球化学 |
5.1 主量元素 |
5.2 微量元素 |
5.3 稀土元素 |
5.4 元素Spearman相关系数分析 |
5.5 矿化过程中元素的带入带出 |
5.6 小结 |
第六章 载金矿物特征及金的赋存状态 |
6.1 含砷黄铁矿 |
6.2 毒砂 |
6.3 金物相分析 |
6.4 金的赋存状态 |
6.5 元素沉淀机制 |
6.6 小结 |
第七章 同位素地球化学 |
7.1 氢、氧同位素 |
7.2 碳、氧同位素 |
7.2.1 碳同位素 |
7.2.2 氧同位素 |
7.3 硫同位素 |
7.4 铅同位素 |
7.5 汞同位素 |
7.6 小结 |
第八章 流体包裹体 |
8.1 流体包裹体类型及岩相学特征 |
8.1.1 水溶液流体包裹体 |
8.1.2 CO_2-H_2O气液两相和三相流体包裹体 |
8.1.3 CH_4-H_2O气液两相流体包裹体 |
8.2 流体包裹体显微测温 |
8.3 流体包裹体成分 |
8.4 小结 |
第九章 成矿过程 |
9.1 与黔西南沉积岩容矿卡林型金矿对比 |
9.2 成矿物质和流体来源 |
9.3 成矿过程与成矿模式 |
第十章 找矿标志与找矿远景 |
10.1 找矿标志 |
10.2 找矿远景 |
第十一章 结论 |
致谢 |
参考文献 |
附录 |
附录一 攻读博士期间发表的论文 |
附录二 攻读博士期间获得的奖励和表彰 |
附录三 攻读博士期间主持和参加的科研项目 |
附表1 全岩主-微量元素分析结果及各分析元素检测限 |
附表2 全岩主-微量元素Spearman相关系数 |
附表3 EPMA标样及EPMA和 LA-ICP-MS检测限 |
附表4 黄铁矿和毒砂EPMA分析结果(ppm) |
附表5 黄铁矿和毒砂LA-ICP-MS分析结果(ppm) |
(7)滇东北-黔西北地区铅锌矿床成矿作用研究(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题来源、依据及意义 |
1.1.1 选题来源 |
1.1.2 选题依据 |
1.1.3 选题意义 |
1.2 国内外研究进展及存在问题 |
1.2.1 MVT铅锌矿床研究现状 |
1.2.2 川滇黔成矿带铅锌矿床研究现状 |
1.2.3 拟解决的关键科学问题 |
1.3 研究目标、内容及技术路线 |
1.3.1 研究目标 |
1.3.2 研究内容 |
1.3.3 技术路线 |
1.4 主要测试方法 |
1.4.1 闪锌矿Rb-Sr年代学研究 |
1.4.2 流体包裹体显微测温 |
1.4.3 原位硫同位素分析 |
1.4.4 LA-ICP-MS微量元素分析 |
1.4.5 显微X射线荧光光谱(XRF) |
1.4.6 LA-ICP-MS单个包裹体分析 |
1.4.7 群体包裹体分析 |
1.5 论文主要完成工作量 |
1.6 论文成果及创新点 |
第二章 区域地质背景 |
2.1 区域地层 |
2.1.1 基底地层 |
2.1.2 沉积盖层 |
2.2 区域构造 |
2.3 区域岩浆岩 |
2.4 区域矿产 |
2.5 区域构造演化 |
第三章 典型矿床地质特征 |
3.1 滇东北毛坪铅锌矿床 |
3.1.1 矿床特征 |
3.1.2 矿石特征 |
3.1.3 围岩蚀变 |
3.1.4 矿物生长顺序及成矿阶段 |
3.2 黔西北地区铅锌矿床 |
3.2.1 杉树林铅锌矿床地质特征 |
3.2.2 筲箕湾铅锌矿床地质特征 |
3.2.3 天桥铅锌矿床地质特征 |
3.2.4 垭都铅锌矿床地质特征 |
第四章 矿床地球化学特征 |
4.1 硫同位素特征 |
4.1.1 毛坪 |
4.1.2 黔西北铅锌矿床硫同位素研究 |
4.2 硫化物微量元素特征 |
4.2.1 主微量元素特征 |
4.2.2 闪锌矿中微量元素赋存特征 |
4.2.3 微量元素对成矿温度的指示 |
4.3 成矿年代学研究 |
第五章 流体包裹体研究 |
5.1 流体包裹体岩相学特征 |
5.2 流体包裹体显微测温 |
5.3 流体包裹体成分分析 |
5.3.1 群体包裹体成分分析 |
5.3.2 单个包裹体成分分析 |
第六章 成矿作用研究 |
6.1 成矿物质来源 |
6.1.1 硫来源 |
6.1.2 成矿金属来源 |
6.2 成矿流体性质及来源 |
6.2.1 成矿流体组成和性质 |
6.2.2 成矿流体来源 |
6.3 成矿类型 |
6.3.1 区域铅锌矿床成矿特征 |
6.3.2 成矿类型对比分析 |
6.3.3 成矿类型微量元素分析 |
6.4 滇东北-黔西北地区铅锌成矿作用与重大地质事件耦合 |
6.4.1 研究区重大地质事件概述 |
6.4.2 成矿时代与地质事件的耦合 |
6.4.3 峨眉山地幔柱活动与铅锌成矿的关系 |
6.4.4 右江盆地演化与铅锌成矿的耦合 |
第七章 成矿规律与找矿前景分析 |
7.1 成矿条件分析 |
7.1.1 成矿与地层 |
7.1.2 成矿与构造 |
7.1.3 成矿与岩浆岩 |
7.2 成矿时代及成矿空间分布规律 |
7.2.1 成矿时代规律 |
7.2.2 空间分布规律 |
7.3 找矿前景分析 |
7.3.1 黔西北地区 |
7.3.2 滇东北地区 |
第八章 主要结论及存在的问题 |
8.1 主要结论 |
8.2 存在问题 |
致谢 |
参考文献 |
(8)诸广山地区棉花坑矿床铀成矿氧化还原条件研究(论文提纲范文)
摘要 |
abstract |
1 引言 |
1.1 选题依据、目的和意义 |
1.1.1 选题依据 |
1.1.2 研究目的 |
1.1.3 研究意义 |
1.2 研究现状及存在问题 |
1.2.1 热液型铀成矿氧化还原条件 |
1.2.2 黄铁矿及其与铀成矿关系 |
1.2.3 赤铁矿及其与铀成矿关系 |
1.2.4 诸广山地区研究现状 |
1.2.5 存在问题 |
1.3 研究内容、方法及技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 主要完成工作量 |
1.5 论文主要创新点 |
2 研究区地质特征 |
2.1 区域地质背景 |
2.1.1 大地构造背景 |
2.1.2 地层 |
2.1.3 岩浆岩 |
2.1.4 构造 |
2.2 矿床地质特征 |
2.2.1 矿床分布特征 |
2.2.2 矿体特征 |
2.2.3 矿石特征 |
2.2.4 围岩蚀变特征 |
3 铀成矿年代学 |
3.1 成矿阶段划分 |
3.2 铀成矿年龄 |
3.2.1 样品特征及分析方法 |
3.2.2 分析结果 |
3.3 成矿地球动力学背景 |
4 铀成矿氧化还原条件 |
4.1 矿物学证据 |
4.1.1 沥青铀矿 |
4.1.2 黄铁矿 |
4.1.3 赤铁矿 |
4.2 流体地球化学证据 |
4.2.1 流体包裹体特征 |
4.2.2 成矿流体演化特征 |
5 热液型铀矿沉淀富集条件 |
6 结论 |
参考文献 |
致谢 |
附录 |
(9)安徽庐枞盆地酸性蚀变岩帽形成机制及成矿指示研究(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章 引言 |
1.1 选题依据及课题来源 |
1.1.1 选题依据 |
1.1.2 课题来源 |
1.2 国内外酸性蚀变岩帽研究现状 |
1.2.1 酸性蚀变岩帽的研究方法 |
1.2.2 酸性蚀变岩帽的形成环境 |
1.2.3 庐枞盆地酸性蚀变岩帽研究历史 |
1.3 存在问题 |
1.4 研究内容及技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
1.5 取得的成果及创新点 |
1.6 论文完成的工作量 |
第二章 区域地质 |
2.1 地层 |
2.2 构造 |
2.2.1 断裂构造 |
2.2.2 褶皱构造 |
2.2.3 火山构造 |
2.3 岩浆岩 |
2.4 区域地球物理场 |
2.4.1 区域重力场特征 |
2.4.2 区域磁场特征 |
2.5 区域矿产 |
第三章 样品及测试方法 |
3.1 样品采集方法 |
3.2 短波红外光谱(SWIR)分析 |
3.3 扫描电镜(SEM)分析 |
3.4 X射线荧光光谱(XRF)分析 |
3.5 流体包裹体测温 |
3.6 全岩地球化学(WRG)分析 |
3.7 电子探针(EPMA)和LA-ICP-MS原位微区分析 |
3.8 明矾石~(40)Ar-~(39)Ar定年分析 |
3.9 金红石原位LA-ICPMS U-PB定年分析 |
3.10 稳定同位素(S、H、O)分析 |
第四章 酸性蚀变岩帽地质特征 |
4.1 矾山矿区地质特征 |
4.1.1 地层 |
4.1.2 构造 |
4.1.3 岩浆岩 |
4.2 蚀变矿化特征 |
4.2.1 明矾石化和明矾石矿体 |
4.2.2 其他蚀变特征 |
4.3 短波红外光谱研究(SWIR) |
4.3.1 SWIR矿物识别 |
4.3.2 SWIR特征参数 |
4.4 矿物组成 |
4.4.1 蚀变矿化期次 |
4.4.2 矿物特征 |
4.5 蚀变分带特征 |
第五章 酸性蚀变岩帽地球化学特征 |
5.1 全岩地球化学特征 |
5.1.1 样品特征 |
5.1.2 酸性蚀变岩帽的岩性分类 |
5.1.3 地球化学特征 |
5.1.4 元素空间分布特征 |
5.1.5 pXRF特征 |
5.2 明矾石地球化学特征 |
5.2.1 明矾石种类 |
5.2.2 不同类型明矾石元素特征 |
5.2.3 明矾石元素地球化学行为控制因素 |
5.2.4 明矾石空间特征 |
5.3 年代学特征 |
5.3.1 明矾石~(40)Ar-~(39)Ar定年 |
5.3.2 金红石LA-ICP-MS U-Pb定年 |
5.3.3 酸性蚀变岩帽的形成时代 |
第六章 酸性蚀变岩帽形成机制 |
6.1 流体包裹体 |
6.1.1 流体包裹体特征 |
6.1.2 均一温度和盐度 |
6.1.3 压力条件 |
6.2 稳定同位素 |
6.2.1 样品特征 |
6.2.2 硫同位素组成 |
6.2.3 氢、氧同位素 |
6.3 矾山酸性蚀变岩帽的形成机制 |
6.3.1 物理化学条件 |
6.3.2 流体演化特征 |
6.3.3 形成机制 |
第七章 酸性蚀变岩帽成矿潜力指示 |
7.1 区域酸性蚀变岩帽 |
7.1.1 分布及产出特征 |
7.1.2 成矿地质条件 |
7.1.3 明矾石成因类型 |
7.1.4 形成环境 |
7.2 酸性蚀变岩帽与庐枞盆地玢岩铁矿的关系 |
7.2.1 年代学 |
7.2.2 围岩蚀变 |
7.2.3 物理化学条件 |
7.2.4 硫的来源 |
7.2.5 玢岩铁矿床蚀变带中明矾石的形成机制 |
7.3 与典型酸性蚀变岩帽对比 |
7.3.1 地质特征 |
7.3.2 流体特征 |
7.3.3 明矾石光谱学及成分特征 |
7.3.4 明矾石地球化学判别 |
7.4 酸性蚀变岩帽找矿指示 |
7.4.1 庐枞盆地矾山矿区 |
7.4.2 庐枞盆地其他地区 |
7.4.3 庐枞矿集区综合找矿模型 |
第八章 主要结论及存在问题 |
8.1 主要结论 |
8.2 存在问题 |
参考文献 |
攻读博士学位期间学术活动及成果情况 |
1 )参加的学术交流与科研项目 |
2 )发表论文 |
附表1 庐枞盆地酸性蚀变岩帽全岩地球化学分析结果 |
附表2 庐枞盆地矾山酸性蚀变岩帽XRF分析结果/PPM |
附表3 庐枞盆地矾山酸性蚀变岩帽明矾石电子探针分析结果 |
附表4 庐枞盆地酸性蚀变岩帽明矾石LA-ICP-MS分析测试结果 |
附表5 庐枞盆地矾山酸性蚀变岩帽矿物短波红外吸收光谱分析结果 |
附表6 庐枞盆地矾山酸性蚀变岩帽矿物流体包裹体测温数据 |
(10)康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示(论文提纲范文)
作者简介 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题来源、目的及意义 |
1.1.1 选题来源及目的 |
1.1.2 研究意义 |
1.2 国内外研究现状及存在问题 |
1.2.1 铁氧化物-铜-金型矿床研究现状 |
1.2.2 发展趋势 |
1.2.3 康滇地区铁氧化物-铜-金型矿床研究现状 |
1.3 研究内容及方案 |
1.3.1 关键科学问题 |
1.3.2 研究对象 |
1.3.3 研究内容 |
1.4 完成的实物工作量 |
第二章 区域地质 |
2.1 地层和岩浆岩 |
2.1.1 古-中元古代火山-沉积地层和侵入岩 |
2.1.2 中-新元古代火山-沉积地层和侵入岩 |
2.2 构造 |
2.2.1 褶皱 |
2.2.2 断裂 |
2.3 区域矿产 |
第三章 测试分析方法 |
3.1 全岩微量元素分析 |
3.2 物相及主量元素分析 |
3.2.1 冷阴极发光 |
3.2.2 扫描电镜 |
3.2.3 电子探针 |
3.3 激光剥蚀ICP-MS微量元素分析 |
3.4 B-O-S-Nd同位素分析 |
3.5 年代学分析 |
3.5.1 LA-ICP-MS U-Pb副矿物年代学 |
3.5.2 SHRIMP副矿物U-Pb年代学 |
3.5.3 硫化物Re-Os年代学测试 |
3.5.4 全岩ID-TIMS年代学测试 |
第四章 矿床地质特征 |
4.1 矿区地质 |
4.1.1 地层 |
4.1.2 构造 |
4.1.3 岩浆岩 |
4.2 矿体特征 |
4.2.1 I号铁铜矿带 |
4.2.2 II号铁矿带 |
4.3 蚀变特征及蚀变相 |
4.3.1 蚀变相的基本概念 |
4.3.2 大红山矿区蚀变相分析 |
4.3.3 原岩恢复 |
4.4 角砾岩与后期叠加蚀变 |
4.4.1 大红山角砾岩 |
4.4.2 后期蚀变与矿化的叠加 |
4.5 矿物生成顺序与成矿期次 |
第五章 成矿流体来源和演化 |
5.1 硫化物矿物学特征及其原位微量元素和硫同位素分析 |
5.1.1 典型样品产状及硫化物显微结构特征 |
5.1.2 硫化物微量元素特征 |
5.1.3 硫化物硫同位素特征 |
5.1.4 讨论 |
5.2 电气石主量元素及硼同位素组成示踪成矿流体演化 |
5.2.1 电气石产状和实验样品 |
5.2.2 分析结果 |
5.2.3 讨论 |
第六章 成矿时代及改造历史 |
6.1 热液锆石U-Pb年代学 |
6.2 硫化物Re-Os年代学 |
6.3 其他含U-Th矿物年代学 |
6.3.1 褐帘石 |
6.3.2 石榴石 |
6.3.3 金红石 |
6.3.4 独居石 |
6.4 全岩Sm-Nd年代学 |
6.5 讨论 |
6.5.1 大红山铁铜矿床成矿时代 |
6.5.2 成矿后多期热液叠加改造 |
6.5.3 多期年龄对同位素年龄解释的启示 |
第七章 成矿物质来源 |
7.1 矿石全岩及主要含稀土矿物微量元素特征 |
7.1.1 矿石全岩微量元素特征 |
7.1.2 主要稀土矿物元素特征及流体交代的影响 |
7.2 全岩及主要稀土矿物Sm/Nd同位素特征 |
7.2.1 全岩ID-TIMS Sm-Nd同位素特征 |
7.2.2 主要稀土矿物Sm-Nd同位素组成特征 |
7.3 讨论 |
7.3.1 初始成矿期物质的来源 |
7.3.2 后期活化过程中成矿物质的来源 |
7.3.3 利用U-Pb和 Sm-Nd系统来探究复杂的热液系统 |
第八章 矿床成因讨论 |
8.1 成矿作用过程与矿床成因模型 |
8.2 对康滇地区IOCG成矿作用的指示 |
8.2.1 区域IOCG成矿年代学框架 |
8.2.2 区域IOCG成矿流体的来源及演化 |
第九章 结束语 |
9.1 主要认识和结论 |
9.2 尚未解决的科学问题及对今后工作的建议 |
致谢 |
参考文献 |
附表 |
四、黄铁矿微量元素地球化学特征及其对成矿流体性质的指示(论文参考文献)
- [1]黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景[D]. 赵春涛. 吉林大学, 2021
- [2]诸广南长江地区花岗岩型铀矿成矿流体作用研究[D]. 赵宇霆. 核工业北京地质研究院, 2021(02)
- [3]安徽蚌埠隆起金矿床成矿作用及成矿模式研究[D]. 陈杨. 合肥工业大学, 2021(02)
- [4]东秦岭三道庄矽卡岩型钼钨矿床矿物学特征及成矿作用研究[D]. 曾志杰. 中国地质科学院, 2021(01)
- [5]青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究[D]. 赵拓飞. 吉林大学, 2021(01)
- [6]贵州西南部架底和大麦地玄武岩中金矿床成矿过程研究[D]. 李俊海. 贵州大学, 2021
- [7]滇东北-黔西北地区铅锌矿床成矿作用研究[D]. 杨清. 中国地质大学, 2021(02)
- [8]诸广山地区棉花坑矿床铀成矿氧化还原条件研究[D]. 陶意. 核工业北京地质研究院, 2020(02)
- [9]安徽庐枞盆地酸性蚀变岩帽形成机制及成矿指示研究[D]. 李旋旋. 合肥工业大学, 2020
- [10]康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示[D]. 苏治坤. 中国地质大学, 2019(05)