一、从2003年全国高考数学试题谈谈中学数学思维模式的应用(论文文献综述)
吴晓红[1](2021)在《核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例》文中研究指明基于课程标准的课程改革的背景,我国采用国家基本要求指导下的教材多样化政策,教材编写由“一纲一本”转变为“一标多本”。目前,我国基于《普通高中数学课程标准(2017年版)》的理念,编制了多个版本的高中数学新教材。因此,新教材与课程标准的要求是否一致就成为了一个急需讨论的问题。本研究拟研究的问题是:(1)如何基于数学核心素养评价框架构建本土化的高中数学新教材习题与课程标准的一致性分析框架?(2)高中数学新教材习题与课程标准的总体一致性水平如何?(3)高中数学新教材习题与课程标准在认知水平维度下的一致性水平如何?(4)高中数学新教材习题与课程标准在各数学核心素养维度下的一致性水平如何?(5)高中数学新教材习题与课程标准的数学核心素养及其水平分布有怎样的规律?本研究通过选取《普通高中数学课程标准(2017年版)》、北京教育出版社和湖南教育出版社出版的《普通高中数学教科书》必修以及选择性必修教材为研究对象。以量化分析为主,质性分析为辅的研究方式,运用文献分析、内容分析、统计分析等方法开展研究工作,得到如下的结论:(1)在总体维度下,北师大版教材习题与课程标准具有统计学意义上的显着一致性,湘教版教材习题与课程标准不具有统计学意义上的显着一致性。(2)在认知水平维度下,北师大版、湘教版与课程标准都具有统计学意义上的显着一致性,并且北师大版与课程标准的显着一致性水平较好。(3)在各数学核心素养维度下,在数学建模、直观想象、数学运算三个维度,北师大版和湘教版教材习题与课程标准都具有统计学意义上的显着一致性;在数学抽象维度,北师大版教材习题与课程标准具有统计学意义上的显着一致性,湘教版教材习题与课程标准不具有统计学意义上的显着一致性;在逻辑推理维度,北师大版和湘教版教材习题与课程标准都不具有统计学意义上的显着一致性。(4)数学核心素养分布特征方面,总体而言,两个版本教材与课程标准关于数学核心素养的考查都注重考查数学抽象、直观想象和数学运算,其次是对逻辑推理素养的考查,最后是对数学建模素养的考查。关于素养水平分布特征,总体维度下的素养水平分布较好,不同内容主题下的素养水平分布存在较大的差异。本研究为提升教材与课程标准一致性,拟从提升教材编者对课程标准的理解水平,深化高中数学课程标准的研究和修订,重视素养的均衡分布及素养高级水平考查,深入研制本土化的一致性水平分析工具四个方面提出了建议。
关婷婷[2](2021)在《高中数学人教A版新旧教材必修部分数学文化的比较研究》文中提出《普通高中数学课程标准(2017年版)》修订中,非常重视数学文化的教育价值,把数学文化贯彻到课程、教材、教学、评价中。但是在实际课堂教学中,数学文化“高评价,低应用”的现象仍然存在。教材是课程实施的主要载体,是开发数学文化素材的前提,因此对教材中数学文化内容进行研究,了解教材中数学文化编排特点具有重要意义。本文以数学文化内容为研究对象,通过系统查阅国内外相关文献,分析数学文化研究现状,进而明确教材比较的研究方向,并结合相应理论基础,完善指标体系,构建本文研究框架。在解读课标相关表述的基础上,运用文本分析、比较分析、统计分析等方法,从内容分布、栏目分布、运用方式等维度,对高中数学人教A版新旧两版教材必修部分数学文化内容进行比较分析。归纳两版教材中数学文化的编排特点,得出新教材中数学文化内容的编排特征:新教材体现数学文化内容的丰富性,符合培养理念;新教材关注数学的内在特性,展现数学的理性精神;新教材数学文化栏目设置合理,凸显数学内在逻辑。在比较研究的基础上,进行教师问卷和访谈调查,了解一线教师对教材中数学文化的认知态度,考察数学文化运用于教学的实际情况,从理论层面和现实层面得出本文研究结论:两版教材数学文化总量丰富,新教材内容分布更显均衡;新教材充分体现应用价值的基础上,关注人文特性;整体运用水平偏低,新教材文化与数学知识关联度更高;数学文化重视程度加深,融入多样性有待提升。根据研究结论,提出可行性教学建议:第一,教师要深刻解读教材数学文化编写意图;其次,教师深度学习数学文化内容,创造性运用数学文化素材;第三,拓展教学思路,合理开发数学文化素材;第四,以数学文化为主题,进行主题教学。
魏嘉[3](2021)在《高中数学人教A版新旧教材“不等式”部分比较研究》文中进行了进一步梳理随着时代的脚步不断前行,我国的教育改革也正在如火如荼地进行。2018年,教育部颁发了《普通高中数学课程标准(2017版)》(以下简称新课标),在此之前我国高中数学教材都是依据《普通高中数学课程标准(实验版)》(以下简称旧课标)编写和修订的,新课标在旧课标的基础上,将基本理念高度凝练,发展“双基”为“四基”,拓展“三能”为“四能”,由提高“五大能力”转变为发展“六大数学学科核心素养”。高中数学教材是课程标准的具体呈现和重要载体,随着新课标的颁布也进行了全面修订,并逐步在全国范围内投入使用。要想合理地使用新教材,发挥其最大效用,就要用科学的手段研究新教材,分析其编写理念,探寻其在旧教材的基础上做出了哪些改动。本文选取了高中数学人教A版2007年版必修五第三章和2019年版必修一第二章为研究对象,二者均为高中数学不等式内容的必修部分,采用文献研究法、比较研究法、访谈法等研究方法,借助鲍建生教授的例习题综合难度模型和解释结构模型(ISM法)等工具,先对国内外已有的教材研究成果进行了梳理和综述,再从不等式部分的课程标准、编写体例、知识结构和例题习题四个方面进行了具体的分析和比较研究,最后对一线教师进行访谈,了解新教材使用情况及其对新教材不等式的教学建议。根据上述研究发现,新教材的设计更加人性化,考虑到学生的认知基础和认知心理,新增预备知识解决初高中衔接问题,优化章节引入、栏目、小结,删减繁难知识,调整知识呈现顺序,完善例题设置,细化习题层次,这些改变均符合新课标提出的“以学生发展为本”,渗透了数学学科核心素养。结合以上研究结论,笔者针对新教材的特点提出不等式部分的教学建议并设计了一个教学案例供读者参考。希望通过不等式部分的量化研究和根据当前现状提出的新教材不等式部分教学建议能够为一线教师的教学提供教学思路和参考价值,从而为我国培养优秀的高素质人才贡献自己的力量。
李蕾[4](2021)在《高中生“解三角形”认知水平的调查研究》文中进行了进一步梳理解三角形作为三角学的有机组成部分,在多学科、多领域中作为工具性的应用,与人类的生活紧密相关。高中数学中解三角形作为单独章节出现,在知识体系中起着承上启下的作用,在高中数学学习及高考中占据重要地位,但学生得分并不尽如人意。那么,高中生解三角形的认知水平究竟如何?为此,开展了高中生解三角形认知水平的调查。本研究选取三所学校非毕业班年级的260名学生为研究对象,具体采用测验调查法、问卷调查法、访谈法等,以SOLO分类评价理论、数学学习分类观及四基理论为理论依据展开研究。研究结论如下:(1)高中生解三角形认知水平平均处于R水平,且R水平中R1水平占比最高。整体而言,正弦定理维度认知水平得分最高,主要集中在R2水平;综合应用维度中实际应用认知水平得分最低,主要集中在M水平。(2)被试全体高中生的解三角形认知水平在学校及性别维度上整体存在统计学意义上的显着差异,女生优于男生;具体而言,并不是任意两个学校之间都存在显着差异,并不是每个学校在性别上都存在显着差异。就班级类型维度而言也存在差异,但并不是任意两种类型班级之间都存在差异。总体而言,重点班优于特色班,特色班优于普通班。(3)学生在解三角形章节习题解题中存在的主要问题是知识体系不完善,具体表现在忽视隐藏条件“大边对大角”的应用、向量夹角判断、基本公式记忆错误如面积公式、数量积公式等、实际应用涉及的方向角等基本概念理解不到位、解法单一。学生对自身知识水平的感知与看法与实际整体是相符合的。基于调查中反映出的问题从教师角度提出一些教学建议:(1)落实四基,尤其注重基础知识的落实;(2)注重理论学习与观念更新;(3)注重培养学生良好的学习习惯。
刘思佳[5](2021)在《高考数学平面解析几何试题结构与内容的演变 ——以1978-2020年全国卷(理科)高考数学试题为例》文中提出平面解析几何能很好地体现学生的数学素养和能力,在中学数学教学及高考中的重要性不言而喻。研究平面解析几何高考试题结构与内容的变化,能帮助教师更好地开展教学,帮助学生更好地进行学习。本文以1978——2020年全国卷(理科)高考数学平面解析几何试题为主要研究对象,研究以下三个问题:1.我国高考数学试题在平面解析几何的考查结构上是怎样发展的?2.我国高考数学试题在平面解析几何的考查内容上是怎样发展的?3.我国高考数学试题在平面解析几何部分的发展对教师教学有何种启示?我们的主要结果有以下几个方面:1.高考平面解析几何试题的结构逐渐趋于稳定。每年考查3-5道题,即2-4道客观题(选择题和填空题)和一道解答题。试题题量占总题量的比值在13.6%-22.7%之间变化,分值占卷面总分值的比重在14.7%-21.3%之间波动。2.平面解析几何选择题更加注重对圆锥曲线方程知识的考查,难度逐渐加大。1978-1999年、2000-2010年、2011-2020年选择题对圆锥曲线方程的考查分别占40.8%、31.8%、68.7%。此外,选择题在逻辑推理、数学运算与认知水平三个因素上,难度也稳定上升。3.平面解析几何填空题逐渐注重对线性规划问题的考查,知识的综合运用因素难度呈递减状态。2011-2020年,直线方程中线性规划问题成为填空题中的热点问题,考查了 54.6%。知识的综合运用因素三个时期难度呈现出递减的状态。4.平面解析几何解答题注重圆锥曲线综合问题的考查,难度变化不大。纵观三个时期,平面解析几何解答题都重视对圆锥曲线综合问题的考查,从难度来看,解答题在逻辑推理、数学运算、知识点综合运用以及认知水平四个因素上的综合难度都呈现小幅度上升的趋势。5.平面解析几何试题不同时期的综合难度逐渐提高。试题对学生逻辑推理、数学运算、认知水平以及综合运用知识解决问题能力的要求不断提高,但平面解析几何试题情境设置较为单一。通过对高考平面解析几何试题结构与内容的研究,结合中学数学教学现状,我们建议教师重视平面解析几何基本知识的教学;重视平面解析几何与其他知识的综合;重视学生数学运算能力的培养。
曹文杏[6](2021)在《高考数学中数学文化综合运用程度分析 ——以2016年-2020年全国卷为例》文中指出随着我国基础教育改革的推进和数学文化研究的深入,“数学文化”已经成为《高考评价体系》中高考数学科的学科素养之一,数学文化融入高考数学已经成为高考数学改革的新气象。高考数学试题中渗透数学文化,有利于引导师生关注数学文化,体会数学的科学精神和理性价值的同时感受数学的人文底蕴,也有利于提高数学课程的育人质量。借鉴高考数学试题分析和试题中数学文化特征的理论研究,结合教学实际,构建高考数学试题中数学文化综合运用程度模型,从量化评价的角度为高考试题中数学文化的分析提供一种新思路。此模型涉及“融入试题方式、结合知识点含量、思维训练层次、数学教育价值观念、学生行为期望”5个要素,各要素分为不同水平。将该模型应用于比较2016-2020年高考数学全国Ⅰ卷、Ⅱ卷、Ⅲ卷中数学文化的综合运用程度,发现全国Ⅰ卷最高,全国Ⅱ卷次之,全国Ⅲ卷最低。近五年高考数学试题中数学文化运用的特征主要为:(1)涉及数学文化背景的试题主要是以现实生活为衬托,结合单个知识点对学生的学科知识进行考查,融入数学史和人文艺术的题目偏少。(2)尽管数学文化更多地以“不可分离型”的方式融入试题,但是近五年高考数学文化类试题更多地强调数学的工具价值和简单思维训练层次;虽然强调了学生理解与运用数学知识,但在要求学生分析问题以强化其数学思维逻辑品质上尚有欠缺。(3)试题基本满足了高考评价体系对数学文化的基本考查要求,但整体而言,数学文化与高考试题的融合不够适切。研究结果表明,高考数学试题中数学文化的运用水平有待进一步提高,由此给出试题命制的建议是:充分融入数学史、传递文化价值,彰显数学本质魅力;紧密结合现实生活,关注数学试题综合性,提高学生行为期望;优化数学文化分布,呈现自然丰富的“文化”试题。对应的教学策略是:传授方法、渗透思想,提高学生的学科素养;创设情境、联系实际,满足学生学习和思维发展的需要;回顾历史、欣赏数学美,激发学生的学习兴趣和创新意识。
杨璐[7](2021)在《基于波利亚解题思想的GeoGebra工具下高考立体几何题的案例分析》文中提出高中数学是一门逻辑性、理论性较强的学科,对培养高中生数学学科核心素养、拓展学生理性思维、促进学生全面发展具有重要意义.立体几何作为新课标中四大主线之一“几何与代数”的一个分支,其高度抽象性成为教师教和学生学的一大障碍,导致学生在高考中立体几何部分得分率低.因此,本文在研究了经验之塔和波利亚解题思想理论的基础上,分析高考立体几何试题的特点,结合前人的研究成果和自己的实践经验,设计了基于波利亚解题思想的Geo Gebra工具下的立体几何解题案例,并在大量特殊的案例中归纳出一般的立体几何解题策略.首先,分析了Geo Gebra软件、波利亚解题思想与高考立体几何试题融合的适切性.在王硕和韩明月的论文中,可以初步得到:Geo Gebra软件在辅助立体几何作图方面具有显着优势,在缩短了作图时间的同时增强了立体几何问题的可视化效果;波利亚解题思想为学生提供了解题问题的一般思路,提高了解决问题的效率和准确率.结合新课标和高考题中的立体几何,明确Geo Gebra软件、波利亚解题思想应用于高考立体几何试题的适切性.其次,对近五年高考立体几何试题进行分析,将2016-2020年的高考立体几何理数真题进行整理,按照知识块将其分为四大类,分别是:空间中与异面直线所成角有关的问题;空间中与立体几何有关的情境问题;空间中与立体几何有关的翻折问题;空间中与球有关的截面、切、接问题.进而,基于波利亚解题思想、利用Geo Gebra软件制作立体几何题目的可视化教学案例.在解题案例中,利用Geo Gebra制作立体几何可视化图形,旨在为学生提供“看得见”的立体几何模型,为学生能够“想得到”提供可视化素材;以波利亚解题思想为指导,帮助学生理解题意、拟定方案、执行方案、回顾,在解题的过程中引导学生学会解题.最后,总结出立体几何解题的一般策略.在波利亚解题思想的指导下,以Geo Gebra软件为作图工具,解决高考立体几何问题,对师生的信息技术能力和创造性使用波利亚解题表有一定要求.同时,对于高中数学中其他三条主线中与几何类似的问题,都可以运用两者结合的模式开展解题研究,提升学生的解题能力.除此之外,也可以将其运用到物理、化学等其他学科领域,促进学生对这一解题模式的全局性理解.
杜剑南[8](2020)在《近十年高考新课标理科数学试卷内容变化研究》文中研究表明“高考”一直以来就是研究者们的热点话题,而新一轮的高考改革——即“取消文理分科”,这一改变也使得社会各界更加关注高考改革的实施。纵观高考试卷的内容变化,从国家考试中心统一命题演变为国家考试中心命题和各地方自主命题并存,又逐步发展为现今全国基本统一使用国家考试中心命制的试卷,而这一变化也提醒我们需要将研究重心聚焦在由国家考试中心命制的试卷上。研究以十年为限,通过查阅资料发现近十年来由国家考试中心统一命制的试卷有两种,即大纲卷和新课标卷,而新课标卷又是现阶段“高考”所使用的试卷,因此就需要进一步探究新课标卷的内容变化特点。基于此,研究选取近十年高考新课标理科数学试卷为研究对象,研究的具体问题是:近十年高考新课标理科数学试卷框架结构有哪些变化及特征?近十年高考新课标理科数学试卷题型结构有哪些变化及特征?近十年高考新课标理科数学试卷知识结构有哪些变化及特征?近十年高考新课标理科数学试卷难度有哪些变化及特征?通过文献研究法对现阶段有关“高考试卷”“高考试卷比较”“高考数学试卷比较”的研究现状、存在的不足等进行详细的分析,使得本研究一来将试卷框架与题型结构分开比较;二来完善了高中理科数学中所有知识点,本研究共统计出347个知识点(其中必考内容312个知识点,选考内容35个知识点),以此进一步细化知识点的统计,以便更好地观察高考数学试卷中知识结构的变化;最后通过分析数学高考试题的相关特点,在现有高考数学试题综合难度模型中七个影响因素的基础上加入条件含量和阅读量,除此之外还进一步完善以往模型中各水平因素的相关描述,并以举例高考试题的方式,将各因素水平与之对应分析,最后将近十年新课标理科数学试卷中的每一道试题按照九个难度因素进行编码,进而利用综合难度模型公式计算出高考理科数学试卷的相关难度。通过比较法分析了近十年新课标卷中四种类型总计21套理科数学试卷——即新课标全国卷(3套)、新课标全国卷Ⅰ(7套)、新课标全国卷Ⅱ(7套)以及新课标全国卷Ⅲ(4套)在框架结构(考试的时间、试卷的总分、试卷指导语)、题型结构(题型的种类、各题型数量、所占分值)、知识结构(知识点总数及覆盖率、各知识单元下的知识点数量及分值)以及难度(各题型难度、各知识单元难度、整卷难度)这四个维度的变化并总结变化特征。通过访谈一线具有较长教龄的教师来完善研究结论,进而提出“新高考”试卷命制和高中数学教学的合理化建议。通过对近十年高考新课标理科数学试卷框架结构中的考试形式、考试总分、考试时间以及试卷说明进行比较发现,试卷在框架结构上注重整体的稳定性;对选择、填空、解答题的数量和分值以及知识点数目的比较发现,试卷在题型结构上呈现出“稳中求变”的趋势;对近十年高考新课标理科数学试卷中总知识点数、知识点总数覆盖比例、各知识单元下的知识点统计以及考查的知识单元数量及分值比较后发现,试卷在知识结构上逐渐关注试题综合性、应用性以及学生的逻辑推理能力;对近十年高考新课标理科数学试卷中不同题型和整卷的难度比较中发现,试卷难度存在相对稳定的层次性、不同种类试卷的各难度因素没有显着差异、逐渐强调学习的过程性。基于研究结果对高考命题的建议:打破命题定势,改变出题结构与数量,适当增加试题灵活性;注重问题情境的设置,考查考生的应用意识;均衡试题综合难度;尽量全面考察高中所学数学知识,持续提升试题的综合性。对高中教学的建议:继续与时俱进的注重“双基”,重视数学本质,培养通性通法;注重数学学习的过程性,培养学生的逻辑推理能力;注重在教学中渗透数学文化,重视试题相关情境的创设,培养和发展学生应用意识。
王素彦[9](2020)在《中学数学名师专业发展个案研究 ——以蔡玉书老师为例》文中认为中学数学名师专业发展研究作为构成教师专业发展研究的重要部分,对我国的教育改革有着重要的促进作用,在推进青年教师的发展方面也有着重要意义.本研究选择了中学数学正高级教师蔡玉书老师作为数学名师研究对象,进行数学名师专业发展个案研究,旨在探索影响蔡玉书老师名师专业发展的主要因素,分析总结可以借鉴的经验,为青年教师专业发展提供参考或启示.本文主要采用定性研究方法,包涵了文献研究法、访谈法、观察法和案例研究法.首先基于研究问题进行相关的文献检索,梳理已有研究结果.其次笔者利用见习之便,通过近距离观察,了解蔡老师的教育理念、教学、科研和竞赛等工作.然后围绕研究问题制定访谈提纲,通过对蔡老师的访谈深入了解蔡老师名师专业发展之路.最后对以上所有研究结果进行整理分析,总结蔡老师的名师专业发展影响因素和可借鉴的经验.本研究的结论如下:(1)影响数学名师蔡玉书老师专业发展主要有四个因素:①具有崇高的教育理念;②具有扎实的专业基础、高超的教学能力和独特的教学特色;③具有坚定的科研信念;④坚持对“第二课堂”的积极引导.(2)对青年教师有三点启示:①树立正确的数学观和教学观;②学会科研、合理科研;③利用和肯定数学竞赛的教育价值.
黄田甜[10](2020)在《从近十年数学全国(Ⅱ)卷考题中看高考复习的基础性、规律性、系统性》文中指出高考是我国人才选拔的主要途径,各高校通过高考成绩择优选取德智体美劳全面发展的优质人才,因此高考对于大部分学生而言是选择自己人生方向、人生层次的指南针。自1977年邓小平总理主持恢复高考至今,我国经济飞速发展、科技突飞猛进、公民素质提高、人民生活水平改善,导致教育政策和培养目标不断变化,高考考核内容、命题形式也伴随着时代的发展而更新。尤其颁布《新课程标准》2017版后,对学生的培养、考核标准提出了更高、更贴近实际生活的要求,这意味着高考数学命题形式会发生掀天揭地的变化。研究高考命题能让学生更加理解和接近高考,同样也为高三教师和学生减轻一定的压力。因此本文主要研究高考数学试题的形式和内容、分析数学高考命题的基础性、规律性,提出高考复习的参考性建议以及根据研究结论预测2020高考数学命题趋势。为了更好的分析高考命题的变化,本文选取近十年(2010年-2019年)数学高考全国(Ⅱ)卷(理科)试题作为研究依据,采用文献法、访谈法、比较分析法和图像分析法,研究高考试卷命题情况。本研究将从以下几个方面进行:第一,参考大量关于数学高考的研究文献,提出本文的研究问题、研究意义、研究方法和研究价值,确定本文的研究技术线路图;第二,阅读高中教材、复习资料、高考复习大纲,确定高中复习的知识板块,对其整理统计编码;第三,研究2010年到2019年数学理科全国(Ⅱ)卷所有试题,分析整理出考查的所有知识点,对每个题目涉及到的知识点进行整理分类编码,做成图表,根据图表从纵横两个方向,分别作图分析知识点命题趋势、定义本文研究的基础性、规律性;第四,分析新课程标准,从核心素养、数学思想方法、数学基础运算三个方面,描述并分析近十年题型发生的变化,根据研究知识点数据,分析得出2020年数学全国(Ⅱ)卷命题预测,进而与高三一线教师对2020年全国(Ⅱ)卷命题的预测进行比较分析,得出更加准确的命题预测方向;最后,得出14个知识板块命题形式的基本预测以及数学核心素养在高考题中的贯穿,得出对教师和学生具有实用价值的系统性复习建议。
二、从2003年全国高考数学试题谈谈中学数学思维模式的应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、从2003年全国高考数学试题谈谈中学数学思维模式的应用(论文提纲范文)
(1)核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景与问题 |
1.1.1 研究背景 |
1.1.2 研究问题 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究思路与方法 |
1.3.1 研究思路 |
1.3.2 研究方法 |
1.4 研究内容与创新 |
1.4.1 研究内容 |
1.4.2 研究创新 |
1.5 本章小结 |
第2章 相关概念界定和文献综述 |
2.1 相关概念界定 |
2.1.1 教材 |
2.1.2 习题 |
2.1.3 课程标准 |
2.1.4 一致性 |
2.2 文献综述 |
2.2.1 高中数学教材研究现状 |
2.2.2 高中数学教材习题研究现状 |
2.2.3 数学核心素养的研究现状 |
2.2.4 数学教材与课程标准的一致性研究现状 |
2.2.5 已有研究的总结 |
2.3 本章小结 |
第3章 理论模型 |
3.1 SEC一致性分析模式 |
3.1.1 SEC一致性分析模式的理念 |
3.1.2 SEC一致性分析程序和方法 |
3.2 数学核心素养的评价框架 |
3.2.1 几个学习评价模型的分析 |
3.2.2 数学核心素养评价的框架 |
3.3 理论模型的应用 |
3.3.1 SEC一致性分析模式的应用 |
3.3.2 数学核心素养评价框架的应用 |
3.4 理论模型的融合 |
3.4.1 基于数学核心素养的SEC一致性分析模型的构建 |
3.4.2 基于数学核心素养的SEC一致性分析模型的评价 |
3.5 本章小结 |
第4章 研究设计 |
4.1 研究对象 |
4.1.1 教材与课标的选取 |
4.1.2 具体内容的选取 |
4.2 研究工具 |
4.2.1 内容主题的划分 |
4.2.2 认知水平的划分 |
4.2.3 一致性分析框架的确定 |
4.3 研究对象的编码 |
4.3.1 课程标准的编码 |
4.3.2 高中数学教材习题的编码 |
4.4 研究信度与效度 |
4.4.1 研究信度 |
4.4.2 研究效度 |
4.5 数据整理 |
4.5.1 课程标准的数据统计 |
4.5.2 高中数学教科书的数据统计 |
4.6 本章小结 |
第5章 研究结果 |
5.1 一致性系数分析 |
5.1.1 一致性系数P值的计算 |
5.1.2 临界值P0 的确定 |
5.1.3 统计学上的显着一致性判断 |
5.2 内容主题分布 |
5.2.1 总体维度下的内容主题分布 |
5.2.2 认知水平维度下的内容主题分布 |
5.2.3 数学核心素养维度下的内容主题分布 |
5.3 认知水平分布 |
5.3.1 总体的认知水平分布 |
5.3.2 认知水平维度下的认知水平分布 |
5.3.3 数学核心素养维度下的认知水平分布 |
5.4 曲面图分析 |
5.4.1 总体维度的曲面图分析 |
5.4.2 认知水平维度下的曲面图分析 |
5.4.3 数学核心素养维度的曲面图分析 |
5.5 数学核心素养及其水平分布 |
5.5.1 数学核心素养分布 |
5.5.2 数学核心素养水平分布 |
5.6 本章小结 |
第6章 研究结论、思考与建议 |
6.1 结论 |
6.1.1 总体的一致性水平特征 |
6.1.2 认知水平维度的一致性水平特征 |
6.1.3 各数学核心素养的一致性水平特征 |
6.1.4 数学核心素养及其水平分布特征 |
6.2 思考 |
6.2.1 影响课程目标的全面落实 |
6.2.2 影响学生数学核心素养的发展 |
6.2.3 影响学生实践能力和创新意识的发展 |
6.2.4 影响基础教育的公平而有质量的发展 |
6.3 建议 |
6.3.1 提升教材编者对课程标准的理解水平 |
6.3.2 深化高中数学课程标准的研究和修订 |
6.3.3 重视素养的均衡分布及素养高级水平考查 |
6.3.4 深入研制本土化的一致性水平分析工具 |
6.4 本章小结 |
第7章 不足与展望 |
7.1 研究不足 |
7.2 研究展望 |
7.3 本章小结 |
参考文献 |
附录 |
附录1 课程标准编码表 |
附录2 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(2)高中数学人教A版新旧教材必修部分数学文化的比较研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)课标修订对数学文化的再重视 |
(二)改善数学文化课堂现状的需要 |
(三)数学文化研究现状 |
二、研究问题 |
三、研究意义 |
(一)理论意义 |
(二)实践意义 |
第二章 文献综述 |
一、文化及数学文化内涵 |
(一)文化 |
(二)数学文化 |
二、数学文化的分类 |
三、不同视角下数学文化的研究 |
(一)数学文化与教育教学相关研究 |
(二)数学文化与课程研究 |
(三)数学文化与高考试题相关研究 |
四、高中数学教材中数学文化比较研究 |
(一)中外高中数学教材中数学文化比较研究 |
(二)我国高中不同版本教材中数学文化比较研究 |
五、文献述评 |
第三章 研究过程与方法 |
一、研究对象 |
二、研究方法 |
(一)文献分析法 |
(二)文本分析法 |
(三)比较分析法 |
(四)调查法 |
三、研究过程 |
(一)研读课程标准及教材,明确研究方向 |
(二)梳理数学文化教材比较的理论基础 |
(三)分析指标体系,完善比较研究的框架 |
(四)针对比较结果,进行教师问卷及访谈 |
(五)得出研究结论,提出教学建议 |
第四章 期望课程对数学文化的相关表述分析 |
一、课程性质与基本理念部分对数学文化相关表述分析 |
二、课程结构与课程内容部分对数学文化相关表述分析 |
三、实施建议部分对数学文化相关表述分析 |
第五章 两版高中数学教材中数学文化比较分析 |
一、两版教材中数学文化内容分布比较分析 |
(一)两版教材数学文化内容总体分布 |
(二)知识源流内容分布 |
(三)学科联系内容分布 |
(四)社会角色内容分布 |
(五)审美娱乐内容分布 |
(六)多元文化内容分布 |
二、两版教材中数学文化的运用方式比较分析 |
三、两版教材中数学文化栏目分布比较分析 |
四、两版教材中数学文化案例比较分析 |
(一)函数主线 |
(二)几何与代数主线 |
(三)概率与统计主线 |
五、比较研究的结果与思考 |
(一)两版教材数学文化内容比较结果 |
(二)新教材数学文化编排特征 |
第六章 教师问卷和访谈 |
一、教师问卷 |
(一)问卷对象 |
(二)问卷设计 |
(三)问卷情况 |
二、教师访谈 |
(一)访谈对象 |
(二)访谈设计 |
(三)访谈情况 |
三、问卷及访谈结果 |
第七章 结论和建议 |
一、研究结论 |
(一)两版教材数学文化总量丰富,新教材内容分布更显均衡 |
(二)新教材充分体现应用价值的基础上,关注人文特性 |
(三)整体运用水平偏低,新教材文化与数学知识关联度更高 |
(四)数学文化重视程度加深,融入多样性有待提升 |
二、教学建议 |
(一)教师深刻解读数学文化编写意图 |
(二)深度学习数学文化内容,创造性运用教材 |
(三)拓展数学文化教学思路,合理开发素材 |
(四)以数学文化为主题,开展主题教学 |
三、研究不足与展望 |
参考文献 |
附录 |
附录一 数学文化认识教师调查问卷 |
附录二 访谈提纲 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(3)高中数学人教A版新旧教材“不等式”部分比较研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)新课程改革提出新要求 |
(二)新教材投入使用时间尚短 |
(三)不等式是高中数学学习的基础 |
二、研究意义 |
三、研究问题 |
第二章 研究设计 |
一、研究对象 |
二、研究思路和方法 |
(一)研究思路 |
(二)研究方法 |
三、研究工具 |
(一)解释结构模型 |
(二)例习题难度综合模型 |
第三章 文献综述 |
一、数学教材比较研究 |
(一)国内外数学教材比较研究 |
(二)我国数学教材比较研究 |
二、中学数学不等式部分研究 |
(一)国外不等式研究现状 |
(二)国内不等式研究现状 |
三、文献评述 |
第四章 新旧教材中“不等式”部分的比较 |
一、《课标(实验)》与《课标(2017)》关于不等式必修部分的比较 |
(一)课程结构比较 |
(二)内容要求比较 |
二、编写体例比较 |
(一)章节布局比较 |
(二)章头比较 |
(三)栏目设置比较 |
(四)章末比较 |
三、知识结构比较 |
(一)新旧教材ISM法知识结构比较 |
(二)模型结果分析 |
四、例习题综合比较 |
(一)研究对象界定 |
(二)例习题数量比较 |
(三)例习题难度比较 |
五、本章小结 |
(一)设置预备知识,优化课程结构 |
(二)完善章节布局,栏目设置丰富 |
(三)知识表述严谨,知识结构符合学生认知心理 |
(四)例题示范性更强,习题层次分明 |
第五章 教师访谈 |
一、访谈对象的选择 |
二、访谈问题的设计 |
三、访谈结果总结 |
第六章 基于新旧教材比较的教学建议及教学设计 |
一、教学建议 |
(一)研读新版课标,分析教材编写意图 |
(二)注重初高中知识衔接,考虑学生认知心理 |
(三)在不等式教学中渗透数学思想方法 |
(四)充分发挥例题示范及强化功能 |
(五)精简习题,分层训练,实现因材施教 |
二、教学设计 |
(一)基于新旧教材比较的教学设计分析 |
(二)《等式性质与不等式性质(第2 课时)》教学设计 |
结语 |
注释 |
参考文献 |
附录 |
附录一 |
附录二 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(4)高中生“解三角形”认知水平的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪言 |
1.1 研究的背景 |
1.1.1 “三角学”历史悠久 |
1.1.2 解三角形在数学中的地位 |
1.1.3 解三角形的学习缺乏质性评价体系 |
1.2 核心概念界定 |
1.3 研究的内容与意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究的过程 |
1.4.2 研究技术路线图 |
1.5 研究范围与限制 |
第2章 文献综述 |
2.1 文献收集途径 |
2.2 解三角形的相关研究 |
2.2.1 解三角形学习现状的研究 |
2.2.2 解三角形教材方面的研究 |
2.2.3 解三角形解题方面的研究 |
2.2.4 解三角形教学方面的研究 |
2.3 数学认知水平的相关研究 |
2.3.1 数学认知水平的调查研究 |
2.3.2 数学认知水平的比较研究 |
2.3.3 数学认知水平的相关性、影响因素、策略与案例研究 |
2.4 文献述评 |
第3章 理论基础 |
3.1 SOLO理论 |
3.2 数学学习分类观 |
3.3 “四基”理论 |
3.4 本章小结 |
第4章 研究设计 |
4.1 研究目的 |
4.2 研究对象 |
4.3 研究方法 |
4.4 研究工具 |
4.5 研究伦理 |
4.6 小结 |
第5章 调查工具的编制与调查实施 |
5.1 测试卷的编制 |
5.1.1 测试卷的出题依据 |
5.1.2 测试卷的内容 |
5.1.3 测试维度的评价标准 |
5.2 调查问卷的设计说明 |
5.3 试测 |
5.3.1 测试卷的信效度分析 |
5.3.2 问卷信效度分析 |
5.4 正式测试的实施 |
5.4.1 样本分布 |
5.4.2 测试实施 |
5.4.3 数据编码 |
5.5 小结 |
第6章 解三角形认知水平调查结果及分析 |
6.1 学生测试卷总体情况分析 |
6.2 高中生解三角形测试题水平样例展示 |
6.3 高中生解三角形认知水平的差异性分析 |
6.3.1 不同学校比较 |
6.3.2 不同班级类型比较 |
6.3.3 性别差异 |
6.4 调查问卷分析 |
6.5 访谈结果 |
第7章 结论与教学建议 |
7.1 研究结论 |
7.2 问题分析 |
7.3 教学建议 |
7.4 研究不足之处 |
参考文献 |
附录 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(5)高考数学平面解析几何试题结构与内容的演变 ——以1978-2020年全国卷(理科)高考数学试题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
第一节 研究背景及目的 |
一、研究背景 |
二、研究目的 |
第二章 研究现状 |
第一节 对高考试题的研究 |
一、高考试题的比较研究 |
二、高考数学试题命题特点与趋势的研究 |
第二节 高中数学平面解析几何试题的相关研究 |
第三节 对已有文献的评价与分析 |
第三章 研究设计 |
第一节 研究对象 |
第二节 研究问题 |
第三节 概念界定 |
第四节 研究方法 |
第四章 高考数学平面解析几何试题结构的研究 |
第一节 确定高考平面解析几何试题 |
第二节 高考平面解析几何试题结构的描述 |
一、选择题的描述 |
二、填空题的描述 |
三、解答题的描述 |
四、试题总体描述 |
第五章 高考数学平面解析几何试题内容的研究 |
第一节 高考平面解析几何试题不同题型考点的变化分析 |
一、平面解析几何选择题题号及考点分布的分析 |
二、平面解析几何填空题题号及考点的分布变化 |
三、平面解析几何解答题题号及考点的分布变化 |
第二节 高考平面解析几何试题综合难度的变化分析 |
一、综合难度理论基础 |
二、平面解析几何试题不同时期试题综合难度的变化 |
三、平面解析几何试题不同题型综合难度的变化 |
第六章 研究结论与建议 |
第一节 研究结论 |
一、平面解析几何试题结构的变化 |
二、平面解析几何试题内容的变化 |
第二节 研究建议 |
一、重视平面解析几何基本知识的教学 |
二、重视平面解析几何与其他知识的综合 |
三、重视学生数学运算能力的培养 |
第三节 总结与反思 |
一、本文工作总结 |
二、研究存在不足 |
三、未来研究展望 |
参考文献 |
附录 |
表1 1978-2020年平面解析几何选择题题量与分值分布 |
表2 1978-2020年平面解析几何填空题题量与分值分布 |
表3 1978-2020年平面解析几何解答题题量与分值分布 |
表4 1978-2020年平面解析几何试题总题量与分值分布 |
表5 平面解析几何选择题的题号及考点分布 |
表6 平面解析几何填空题的题号及考点分布 |
表7 平面解析几何解答题的题号及考点分布 |
致谢 |
(6)高考数学中数学文化综合运用程度分析 ——以2016年-2020年全国卷为例(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 研究背景 |
1.1.1 高中数学课程改革 |
1.1.2 高考改革的要求 |
1.1.3 数学文化的教育现状 |
1.2 研究意义 |
1.2.1 理论价值 |
1.2.2 实践意义 |
1.3 研究问题 |
1.4 核心概念界定 |
1.4.1 数学文化的界定 |
1.4.2 数学文化试题的界定 |
第2章 文献综述 |
2.1 数学文化与数学教育的研究 |
2.1.1 国外研究 |
2.1.2 国内研究 |
2.2 我国数学文化与高考的研究 |
第3章 研究设计 |
3.1 研究对象 |
3.2 研究方法及思路 |
3.2.1 主要研究方法 |
3.2.2 研究思路 |
3.3 研究模型的建立 |
3.4 数学文化试题的分类编码及典例说明 |
第4章 2016—2020 年高考数学全国卷中数学文化综合运用程度分析 |
4.1 数据的收集与整理 |
4.1.1 数学文化试题类型及其分布情况 |
4.1.2 近五年高考数学全国卷中数学文化综合运用情况统计 |
4.2 三组数学文化试题各要素的不同水平比较 |
4.2.1 融入试题方式的比较 |
4.2.2 结合知识点含量的比较 |
4.2.3 思维训练层次的比较 |
4.2.4 数学教育价值观念的比较 |
4.2.5 学生行为期望的比较 |
4.3 三组试题数学文化综合运用程度比较 |
4.4 高考数学试题中数学文化运用的特征 |
第5章 结论与建议 |
5.1 研究结论 |
5.1.1 三组试题中数学文化运用情况 |
5.1.2 高考数学试题中数学文化运用特征 |
5.2 建议 |
5.2.1 对高考数学试题命制的建议 |
5.2.2 对高中数学教学的建议 |
5.3 不足与展望 |
参考文献 |
附录A 高考试题中数学文化综合运用程度分析要素的评分调查 |
附录B 各要素的权重值计算 |
攻读学位期间获得与学位论文相关的科研成果目录 |
致谢 |
(7)基于波利亚解题思想的GeoGebra工具下高考立体几何题的案例分析(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.2.1 Geo Gebra软件的相关研究 |
1.2.2 波利亚解题思想的相关研究 |
1.2.3 立体几何解题的相关研究 |
1.2.4 研究述评 |
1.3 研究问题 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 研究意义 |
1.5.1 理论意义 |
1.5.2 实践意义 |
第2章 相关理论基础 |
2.1 相关概念的界定 |
2.1.1 Geo Gebra软件 |
2.1.2 波利亚解题表 |
2.2 理论依据 |
2.2.1 “经验之塔”理论 |
2.2.2 “波利亚怎样解题”理论 |
第3章 Geo Gebra、波利亚解题思想应用于高考立体几何试题的适切性分析 |
3.1 Geo Gebra软件应用于立体几何的优势 |
3.2 波利亚解题思想应用于立体几何的优势 |
3.3 新课标中对立体几何的要求 |
3.4 高考中的立体几何解题现状 |
第4章 基于波利亚解题思想的Geo Gebra工具下高考立体几何题的案例分析 |
4.1 近五年高考立体几何试题分析 |
4.1.1 解题方法取向分析 |
4.1.2 试题分值与知识点分布 |
4.2 与异面直线所成角有关的问题 |
4.3 与立体几何有关的情境问题 |
4.4 与立体几何有关的翻折问题 |
4.5 与球的截面、切、接有关的问题 |
4.5.1 球的截面圆内接等边三角形问题 |
4.5.2 球与多面体的切、接问题 |
4.5.3 球与旋转体的切、接问题 |
第5章 基于波利亚解题思想的Geo Gebra工具下立体几何解题策略 |
5.1 模型识别——长方体模型的运用 |
5.2 将空间问题转化到平面内解决 |
5.3 立体几何与代数相结合 |
5.4 将生活中的几何问题数学化 |
第6章 研究结论与展望 |
参考文献 |
附录一 |
附录二 |
附录三 |
致谢 |
攻读硕士研究生期间研究成果 |
(8)近十年高考新课标理科数学试卷内容变化研究(论文提纲范文)
摘要 |
abstract |
第一章 问题的提出 |
一、研究背景和意义 |
(一)课程改革的需要 |
(三)提高实践教学质量的需要 |
(四)落实立德树人根本任务的需要 |
(五)高考改革的需要 |
(六)落实新的高中课程方案及高中数学课程标准的需要 |
二、相关概念及范围界定 |
(一)新课标卷 |
(二)试卷内容 |
(三)试题难度 |
三、研究问题的表述 |
第二章 文献综述 |
一、有关国外试卷的研究 |
(一)美国SAT试卷研究 |
(二)PISA试卷研究 |
(三)其他国家与中国高考的试卷研究 |
二、关于国内高考试卷的比较研究 |
(一)关于高考试卷比较研究 |
(二)关于高考试卷的难度比较研究 |
(三)关于高考试卷的研究方法 |
三、综述小结 |
第三章 研究思路与方法 |
一、研究对象 |
二、研究方法 |
(一)文献分析法 |
(二)比较法 |
(三)访谈法 |
三、研究思路 |
四、试题难度研究工具的选择 |
(一)试题难度因素的提取 |
(二)试题综合难度因素的具体描述 |
(三)试题综合难度模型公式 |
第四章 研究结果 |
一、近十年高考新课标理科数学试卷框架变化及特征 |
(一)近十年高考新课标理科数学试卷框架变化 |
(二)近十年高考新课标理科数学试卷框架变化的特征 |
二、近十年高考新课标理科数学试卷题型结构变化及特征 |
(一)近十年高考新课标理科数学试卷必考题中选择题分析 |
(二)近十年高考新课标理科数学试卷必考题中填空题分析 |
(三)近十年高考新课标理科数学试卷必考题中解答题分析 |
(四)近十年高考新课标理科数学试卷选考题分析 |
(五)近十年高考新课标理科数学试卷题型结构变化的特征 |
三、近十年高考新课标理科数学试卷知识结构分析 |
(一)近十年高考新课标理科数学试卷知识点总量统计 |
(二)近十年高考新课标理科数学试卷知识点总数覆盖比例 |
(三)近十年高考新课标理科数学试卷知识单元下的知识点统计 |
(四)近十年高考新课标理科数学试卷考查的知识单元数量及分值统计 |
(五)近十年高考新课标理科数学试卷知识结构变化的特征 |
四、近十年高考新课标理科数学试卷难度分析 |
(二)近十年高考新课标理科数学试卷填空题综合难度分析 |
(三)近十年高考新课标理科数学试卷解答题综合难度分析 |
(四)近十年高考新课标理科数学试卷整卷综合难度分析 |
(五)近十年高考新课标理科数学试卷难度变化的特征 |
第五章 研究结论与建议 |
一、研究结论 |
(一)近十年高考新课标理科数学试卷在框架结构上注重稳定性 |
(二)近十年高考新课标理科数学试卷在题型结构上表现出“稳中求变”的趋势 |
(三)近十年高考新课标理科数学试卷在知识结构上逐渐凸显试题综合性 |
(四)近十年高考新课标理科数学试卷在知识结构上逐渐关注试题的应用性 |
(五)近十年高考新课标理科数学试卷在知识结构上逐渐关注学生逻辑推理能力 |
(六)近十年高考新课标理科数学试卷在试卷难度上存在相对稳定的层次性 |
(七)近十年高考新课标理科数学试卷不同类型试卷各难度因素没有显着差异 |
(八)近十年高考新课标理科数学试卷在试卷难度上逐渐强调学习的过程性 |
二、建议 |
(一)对高考命题的建议 |
(二)对高中数学教学的建议 |
参考文献 |
一、网页 |
二、文件及着作 |
三、期刊论文 |
四、学位论文 |
致谢 |
攻读学位期间公开发表的论文 |
(9)中学数学名师专业发展个案研究 ——以蔡玉书老师为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 课题提出背景 |
1.2 课题的意义 |
1.2.1 理论意义 |
1.2.2 现实意义 |
1.3 研究对象 |
第2章 文献综述 |
2.1 概念界定 |
2.1.1 教师专业发展 |
2.1.2 名师教师 |
2.1.3 正高级教师 |
2.1.4 特级教师 |
2.1.5 数学名师——蔡玉书 |
2.2 相关研究现状 |
2.2.1 教师专业发展影响因素研究现状 |
2.2.2 名师相关研究现状 |
2.3 小结 |
第3章 研究内容和方法 |
3.1 研究内容 |
3.2 研究方法和研究框架 |
3.2.1 研究方法 |
3.2.2 研究框架 |
3.3 研究问题 |
3.4 研究重点和难点 |
3.4.1 研究重点 |
3.4.2 研究难点 |
第4章 影响蔡老师专业发展的主要因素 |
4.1 数学教育理念 |
4.1.1 数学观 |
4.1.2 数学教学观 |
4.2 数学教学工作 |
4.2.1 专业基础 |
4.2.2 教学能力 |
4.2.3 教学设计 |
4.2.4 教学特色 |
4.3 科研工作 |
4.3.1 论文与专着 |
4.3.2 课题与项目 |
4.3.3 名师工作室 |
4.4 竞赛工作 |
4.4.1 教练工作 |
4.4.2 学生成绩 |
4.5 小结 |
4.5.1 影响蔡老师专业发展的外在因素 |
4.5.2 影响蔡老师专业发展的内在因素 |
第5章 访谈结果及分析 |
5.1 访谈目的及提纲 |
5.2 访谈结果及分析 |
5.2.1 访谈结果 |
5.2.2 归纳与分析 |
5.3 小结 |
第6章 结论和建议 |
6.1 结论 |
6.1.1 崇高的教育理念 |
6.1.2 扎实的专业基础、高超的教学能力和独特的教学特色 |
6.1.3 坚定的科研信念 |
6.1.4 对“第二课堂”的积极引导 |
6.2 对青年教师的启示 |
6.2.1 树立正确的数学观和教学观 |
6.2.2 学会科研,合理科研 |
6.2.3 利用和肯定数学竞赛的教育价值 |
第7章 结语 |
参考文献 |
附录A 蔡玉书老师大事记 |
附录B 蔡玉书老师的科研论着汇总 |
致谢 |
(10)从近十年数学全国(Ⅱ)卷考题中看高考复习的基础性、规律性、系统性(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景、意义 |
1.2 现状研究与文献综述 |
1.3 研究内容、研究方法与创新点 |
2 对近十年数学高考全国(Ⅱ)卷(理科)分析与研究 |
2.1 数学全国(Ⅱ)卷理科试题的由来和适用范围 |
2.2 2010 年-2019 年数学全国(Ⅱ)理科试题分析 |
3 对高考试题基础性的研究 |
3.1 对近十年高考题基础性研究 |
4 高考试题规律性研究 |
4.1 对近十年高考题每个知识点进行横向分析 |
4.2 对每个知识点进行纵向分析 |
5 预测2020 年数学全国(Ⅱ)卷命题趋势 |
5.1 根据分析统计出的数据对2020 年高考命题预测 |
5.2 高中一线教师对2020 年考点预测分析 |
6 对高考复习的系统性建议 |
6.1 高考试题的变化影响复习策略 |
6.2 对高三师生的复习建议 |
参考文献 |
附录 |
附录一 计算各难度因素的加权平均公式是 |
附录二 不同地区、不同学校对高考题命题预测研究 |
(1)甘肃省天水三中教师预测 |
(2)甘肃省天水市甘谷一中教师预测 |
(3)新疆维吾尔自治区石河子市石河子一中教师预测 |
致谢 |
作者简介 |
附件 |
四、从2003年全国高考数学试题谈谈中学数学思维模式的应用(论文参考文献)
- [1]核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例[D]. 吴晓红. 广西师范大学, 2021(09)
- [2]高中数学人教A版新旧教材必修部分数学文化的比较研究[D]. 关婷婷. 哈尔滨师范大学, 2021(08)
- [3]高中数学人教A版新旧教材“不等式”部分比较研究[D]. 魏嘉. 哈尔滨师范大学, 2021(08)
- [4]高中生“解三角形”认知水平的调查研究[D]. 李蕾. 云南师范大学, 2021(09)
- [5]高考数学平面解析几何试题结构与内容的演变 ——以1978-2020年全国卷(理科)高考数学试题为例[D]. 刘思佳. 中央民族大学, 2021(12)
- [6]高考数学中数学文化综合运用程度分析 ——以2016年-2020年全国卷为例[D]. 曹文杏. 信阳师范学院, 2021(09)
- [7]基于波利亚解题思想的GeoGebra工具下高考立体几何题的案例分析[D]. 杨璐. 宁夏师范学院, 2021(09)
- [8]近十年高考新课标理科数学试卷内容变化研究[D]. 杜剑南. 西北师范大学, 2020(01)
- [9]中学数学名师专业发展个案研究 ——以蔡玉书老师为例[D]. 王素彦. 苏州大学, 2020(02)
- [10]从近十年数学全国(Ⅱ)卷考题中看高考复习的基础性、规律性、系统性[D]. 黄田甜. 石河子大学, 2020(08)