一、Numerical Simulation for FWM Power Evaluation in Optical Fiber Transmission Systems(论文文献综述)
杜珊娜[1](2021)在《纠缠态连续变量量子密钥分发的量子—经典信道复用技术及源无关安全性研究》文中进行了进一步梳理随着科学技术的蓬勃发展,信息安全性受到越来越多人的广泛关注。量子密钥分发(Quantum Key Distribution,QKD)作为量子信息的重要分支,基于量子力学基本原理,可以为通信双方提供信息理论上无条件安全性,窃听者不能在不被发现的情况下得到任何信息,成功的QKD过程可以使合法通信双方共享一组安全密钥。在QKD分类不同的协议中,基于纠缠态的连续变量量子密钥分发(Continuous-Variable QKD,CV-QKD)具有抗额外噪声强、可实现源无关安全性、与现有光纤网络易兼容、使用成熟的平衡零拍探测(Balanced Homodyne Detector,BHD)技术等优势,且光场纠缠具有远距离扩展潜力,有望在未来实现大范围的量子网络。基于上述发展潜力,我们首先建立了稳定的长距离强抗额外噪声的纠缠态CV-QKD实验系统,之后从实用性、安全性以及高速化三方面进一步推进纠缠态CV-QKD技术的发展。本论文主要的研究内容以及创新点如下:1.实现连续变量EPR纠缠态在50 km光纤信道上的密钥分发实验。首先使用内部放有周期性极化磷酸氧钛钾晶体的四镜蝶形共振腔产生高纠缠度双色连续变量纠缠源,其中810 nm光场留在本地Alice端,可以进行直接测量或者将其携带的量子信息保存至本地的量子存储载体(如Rb原子)上;另一束1550 nm光场用于量子信息的远距离传输。测量端,我们使用DAQ高速采集卡采集光场正交分量值,经过一系列数据处理过程,得到在标准光纤中传输50 km后纠缠态的正交相位和以及正交振幅差分量的纠缠度依然达到-0.315 dB和-0.354 dB,满足EPR判据,说明Alice和Bob共享的双模态仍然是正交纠缠态。纠缠态CV-QKD 比同传输距离下的相干态CV-QKD可获得更高的安全密钥率。2.实现纠缠态CV-QKD与相邻通道间隔为100 GHz的五通道经典光进行密集波分复用实验。其中每个经典通道发射功率各为2 mW,且经过速率为2.5 Gb/s和10 Gb/s的非归零键控调制。实验过程中,我们首先分析经典光在与量子信号同步传输过程中容易引入到量子信道的额外噪声源,其中值得注意的是,当通信距离较短时,四波混频噪声将成为引入到量子系统中的主要额外噪声源,严重影响安全密钥率的生成。因此,我们建立四波混频噪声产生额外噪声的理论计算模型,并从实验上验证其正确性,最终利用不等频率间隔摆放技术消除四波混频噪声影响,进而实现长距离纠缠态CV-QKD与强经典光的共存。3.实现纠缠态源无关CV-QKD实验。Alice和Bob可以在纠缠源不可信的条件下共享安全密钥,进一步提高纠缠态CV-QKD系统的实际安全性。我们选取产生密钥率最高的纠缠源参数,调节正交振幅和正交位相分量的随机测量基比例为0.1:0.9,在Charlie到Alice的等效距离和Charlie到Bob的光纤传输距离组合分别为(0 km,60km)、(1 km,40km)和(2km,20km)的情况下,分别取得每脉冲安全密钥率为 0.0034 bits、0.0058 bits和0.021 bits。4.设计并制作了可测量40 MHz重复速率脉冲光场的平衡零拍探测器。理论计算时域BHD信噪比,设计RLC高通滤波电路显着提高脉冲重复频率,抑制电子学暗噪声,并调节放大器参数、精心设计电荷放大器反馈电路部分,在可测量高速脉冲信号情况下尽量提高信噪比,得到能够测量40 MHz高重复速率脉冲信号、且当每脉冲的光子数为9.9×107下信噪比为14.5 dB的BHD,为高速CV-QKD系统提供不可或缺的测量装置。
覃禹让[2](2021)在《高速光WDM系统中的非线性效应及其补偿》文中进行了进一步梳理随着互联网和新兴产业的喷涌而出,通信网络逐渐进入到了流量大爆炸的时代,大数据、云计算、在线教育、网络直播等各种各样的互联网应用对网络带宽的需求在快速增长。数据传输方面对传输速率、传输距离、传输带宽展现了更高的需求,在高速传输的条件下,不可避免地将受到更严重地非线性效应的影响,如何更高效地完成对传输损伤的补偿显得尤为重要。而波分复用系统(WDM)是应用最广泛的传输系统之一,其能够提高信道容量和带宽的特性,也恰恰满足了新一代光通信数据传输需求。本论文重点研究了相干光WDM系统中非线性效应的估计模型、用于非线性补偿的数字反向传输算法和能够提高信道容量和频谱效率的概率整形技术。提出了一种简化的非线性效应估计模型、改良的自适应数字反向传输算法和概率整形与反向传输算法的融合方案。论文的主要工作内容和创新点如下:(1)研究了相干光WDM系统的概念和理论模型,重点研究了相干光WDM系统中的非线性效应,提出了相干光WDM系统的简化噪声估计模型,该方案创新点为大大简化了非线性噪声的计算复杂度,仿真研究了常规光WDM系统与弹性光WDM两种系统中噪声的估计效果,研究结果表明该简化噪声模型在简化了复杂度的同时也很好地对系统中的噪声进行估计。(2)研究了用于非线性损伤补偿的数字反向传输算法,提出了基于二分的自适应数字反向传输搜索方案,该方案的创新点是在未知传输链路参数的情况下,能够通过二分搜索的方式计算出最佳的非线性参数,并大大减少补偿的计算复杂度。仿真对传统DBP算法与所提出的算法进行了对比分析,研究结果表明,所提出的算法可在未知传输链路参数的情况下对传输损伤进行补偿,相对于传统方式有良好的补偿效果,计算复杂度大大降低。(3)研究了概率整形的基本原理,提出了一种基于概率整形和数字反向传输算法的联合补偿方案,该方案创新点在于通过两者的融合补偿,能够在提高传输的信道容量的同时也具有良好的补偿效果。仿真研究了联合补偿方案的传输性能及其影响因子,研究结果表明,在选取合适的参数条件下,该补偿方案能够在接近传输的互信息极限的条件下,同时有着良好的传输性能。
于超[3](2021)在《全光OFDM系统中的光学传输损伤及其抑制》文中研究表明正交频分复用系统(OFDM)因其子载波在频域可以相互交叠使其具有较高的频谱利用率,满足目前在有限带宽内实现高传输速率等需求。应用于各种场景中的OFDM技术在2010年后一直是无线通信与光通信的研究热点,其中全光OFDM系统是一种不需要高带宽数模转换器就可以产生频谱利用率极高且占据整个C波段的超信道传输系统,已成为光通信领域的研究热点之一。目前全光OFDM系统因两大主要问题限制其应用于商业光网络中,其一为重叠的子载波在使系统具有极高的频谱利用率的同时,也因为子载波频域间隔较小导致系统抗光学传输损伤能力尤其是抗色散与非线性效应的能力较低;其二是为了进行色散补偿以及降低非线性效应对全光OFDM系统的影响,全光OFDM系统中使用了较多的数字信号处理芯片导致系统成本与复杂度较高。因此如何提高全光OFDM系统抗光学传输损伤的能力以及降低系统的复杂度和传输成本成为了目前关于全光OFDM系统的研究热点。本文针对如何提高全光OFDM系统抗光学传输损伤能力、如何降低系统成本这两个问题,重点研究了色散、自相位调制、交叉相位调制和四波混频效应等光学传输损伤对全光OFDM系统传输质量的影响,提出了一种提高全光OFDM系统抗色散能力的方案以及一种提高全光OFDM系统抗四波混频效应能力的方案。这两种方案可以提高全光OFDM系统对色散以及非线性效应的鲁棒性,可以在某些应用场景中减少高速率数字信号处理芯片的使用,降低系统成本以及复杂度。本文的主要工作与创新点如下:1.建立了更加完善的全光OFDM系统传输模型,首次分析了走离、色散与非线性共同作用下光学传输损伤对系统传输质量的影响。在研究传统的光OFDM系统非线性传输模型的基础之上,提出了针对全光OFDM系统子载波间走离效应明显存在的情况下的非线性分析模型。使用改进过的迭代对称分步傅里叶法求解全光OFDM信号在光纤中传输时的非线性薛定谔方程。对子载波走离效应明显时,色散、非线性效应对系统造成的光学传输损伤进行了数值分析。仿真结果表明,色散是影响全光OFDM系统传输质量的主要因素,除色散外四波混频效应极大的限制了系统的传输性能。另外还对比了插入光循环前缀(CP)的全光OFDM系统与插入光保护间隔(GI)的全光OFDM系统的性能。通过仿真找到了系统在插入光CP或光GI之后,接收端sinc型滤波器的最佳接收带宽以及最佳采样点。仿真结果表明插入光CP与光GI都可以在一定程度上提高系统的传输质量,光CP对系统传输质量的提升较大。2.提出了一种提高全光OFDM系统抗色散能力的方法。在研究色散对全光OFDM系统传输质量影响的基础之上,提出了通过修改控制子载波生成的滤波器的滤波函数从而提高全光OFDM系统抗色散的能力的方法。该方法通过使用高斯型滤波器取代sinc型滤波器并对子载波进行频域稀疏化,使受到色散影响后的系统整体误码率明显降低。仿真结果表明具有32个子载波、调制格式为QPSK的全光OFDM系统,在使用sinc型滤波器时经过60km传输之后误码率为8.545×10-2,将sinc型滤波器替换为高斯滤波器将子载波间距增大1.5倍之后,误码率为1.596×10-3。3.提出了一种提高全光OFDM系统抗四波混频效应能力的方法。在研究四波混频效应对全光OFDM系统传输质量影响的基础之上,提出了一种提高全光OFDM系统抗四波混频效应能力的方法。该方法通过插入一定大小的光GI并将子载波进行分组与时延从而降低一部分四波混频效应产物的强度,同时将另外一部分四波混频效应产物作用于光GI之内,使之对每个符号周期内含有光信号的部分产生较小的影响。仿真验证了该方案能够降低四波混频效应对系统的影响,尤其是插入大小为0.33的光GI、相邻的两个子载波的时延差为三分之一个符号周期的全光OFDM系统,其误码率接近在仿真中不考虑四波混频效应的常规的全光OFDM系统的误码率,该方法很好的提高了全光OFDM系统对四波混频效应的鲁棒性,能更好的应对未来光网络中在有限的带宽内传输更大容量信息的需求。
刘欣雨[4](2021)在《基于高阶调制格式的相干光通信系统中非线性均衡技术研究》文中认为云计算、人工智能、移动互联网等新兴技术的不断突破和发展,推动现代社会迈入了“万物互联”的“大数据时代”。超大数据存储、传送、共享等业务的需求日益增强,进一步推动了网络流量的爆炸性增长。因此,现代通信网络需要更高的传输速率、更大的传输容量以及更好的传输质量来保障日益增长的网络流量需求。以光纤作为传输媒介的光纤通信系统具有衰减小、抗干扰能力强、传输容量大等优点,经过几十年来研究学者们的不断探索与突破,光纤通信系统已经发展成为实现全球互联互通的基石和现代通信网络的支柱。结合了高阶调制格式、相干检测技术以及数字信号处理技术的相干光纤通信技术可以实现高频谱效率、长距离、大容量的信号传输,是应对现代通信网络流量危机的重要技术。然而,在目前的高速相干光通信系统中,非线性损伤是限制高阶调制格式光信号大容量长距离传输的最重要因素。因此,对基于高阶调制格式的相干光通信系统的非线性均衡技术进行探索和研究具有重要的意义。本论文以单载波偏振复用相干光通信系统为研究背景,重点研究适用于高阶调制格式信号的非线性均衡技术,改善信号质量,实现系统传输性能的提升。具体的研究内容包括:具有非线性容忍度的判决算法、基于神经网络的非线性均衡方案、基于微扰理论和回归算法相结合的非线性均衡方案。论文的创新点和主要研究成果如下:1.基于高斯混合聚类的M-QAM调制格式信号非线性判决算法针对传统的基于最大似然估计(MLE)的判决算法不能很好的对非线性失真信号进行有效的判决这一问题,将机器学习中的高斯混合(MoG)聚类算法引入到相干光通信系统数字信号处理的判决模块中,提出了基于高斯混合聚类的M-QAM调制格式信号非线性判决算法。同时,基于高斯混合聚类的优点,本文对直接判决-最小均方(DD-LMS)算法进行了优化和改进,在判决模块中将高斯混合聚类计算得到的均值向量代替标准星座点。经过单载波偏振复用16-QAM相干光通信系统实验验证,相比于传统的基于MLE的判决算法,基于高斯混合聚类的非线性判决算法对非线性损伤敏感度低,能够灵活地根据接收到的数据点的分布进行非线性判决区域划分,实现更准确的信号判决,提高相干光通信系统的非线性容限,提升系统的性能。2.基于特征工程-深度神经网络的非线性均衡方案在相干光通信系统中基于神经网络的非线性均衡技术的基础上,针对由于输入数据特征不丰富,导致神经网络非线性均衡性能受限的问题,提出了基于特征工程-深度神经网络的非线性均衡方案。该方案对接收到的方形M-QAM信号数据进行特征工程处理,丰富数据特征信息,以及在深度神经网络的训练阶段引入加权损失训练机制。经过单载波偏振复用64-QAM相干光通信系统实验验证,所提出的特征工程方案和引入的加权损失训练机制可以有效地提升深度神经网络的收敛速度和非线性均衡性能,在发射光功率为0 dBm时,可以实现1.07 dB的Q因子提升量。3.基于双向门控循环单元神经网络的非线性均衡方案针对相干光通信系统中,非线性效应与色散造成脉冲展宽从而引入符号间干扰的问题,提出了基于双向门控循环单元神经网络的非线性均衡方案,对接收到的高阶调制格式信号数据进行序列化处理。经过单载波偏振复用64-QAM相干光通信系统实验验证,在发射光功率为-3 dBm至3 dBm范围内,提出的非线性均衡方案实现了信号的Q因子超过8.53 dB硬判决前向纠错门限(对应于3.8×10-3的误码率),最佳发射光功率提升了 2 dB。4.基于双向长短期记忆神经网络-条件随机场的非线性均衡方案在基于循环神经网络的非线性均衡方案的研究基础上,提出了基于双向长短期记忆神经网络-条件随机场的非线性均衡方案。经过单载波偏振复用64-QAM相干光通信系统实验验证,在发射光功率为-3 dBm至3 dBm范围内,提出的非线性均衡方案实现了信号的Q因子超过9.8dB前向纠错门限(对应于1.0×10-3的误码率),最佳发射光功率由-1 dBm提升至1 dBm,提升了 2 dB。5.基于微扰理论和回归算法相结合的非线性均衡方案在相干光通信系统中基于微扰理论的非线性均衡技术的研究基础上,提出了基于微扰理论和回归算法相结合的非线性均衡方案。不依赖于传输信道的精确参数信息,仅根据接收到的信号序列,使用信道内四波混频和信道内交叉相位调制三重积项作为输入特征,通过回归模型预测出信号在传输过程中受到的非线性损伤,在接收到的符号数据中减去预测的非线性损伤,实现信号的非线性均衡。经过单载波偏振复用64-QAM相干光通信系统实验验证,基于支持向量回归模型的非线性均衡方案实现了当信号发射光功率为1 dBm时误码率低于1.0×10-3,最佳发射光功率提升了 2 dB。
王东飞[5](2021)在《光载射频系统中毫米波及矢量毫米波信号的光子生成技术研究》文中提出随着第五代通信系统(5G)的逐渐部署,物联网、大数据、区块链、云计算、人工智能等业务的蓬勃发展,为人们的生活和工作方式、政治、经济都提供了前所未有的体验,进而带来了对网络容量的极大需求,急剧增长的业务流量给移动通信造成了严峻的挑战。由于中低频段无线电频谱资源的日益匮乏和对高速无线宽带接入的迫切需求,让人们将目光转向了频谱资源更加充裕的高频毫米波频段。然而,采用传统电的方式来生成毫米波信号,由于有限的带宽等电子瓶颈的限制,变得愈发困难而且成本倍增,同时,高频率的信号在空中进行无线传输时,由于大气信道的衰减特性,毫米波信号的传输距离也受到了极大的制约。基于光载射频(Radio over fiber,RoF)的毫米波信号及矢量毫米波信号的产生和传输技术不仅可以更加简单灵活地产生高频载波,还可以基于光纤链路作为传输媒介来实现对毫米波信号的长距离低损耗传输,在未来的无线接入网中拥有极为广泛的应用前景。本论文围绕光载毫米波系统的实现,对高倍频因子的毫米波信号产生、矢量毫米波信号产生及矢量信号的RoF传输等方面的关键问题进行了深入的研究,所取得的主要研究成果为:1.针对高倍频毫米波信号产生过程中,结构复杂,精确同步困难,可调谐性差、系统稳定性弱、成本高的问题,提出了三种全新结构的毫米波信号生成方案。第一种方案为,采用单个马赫曾德尔调制器,无需借助光滤波器,实现了频率可调谐的四倍频毫米波信号的产生。与其他已报道的四倍频毫米波信号产生方案相比,本方案仅仅采用一个马赫曾德尔调制器,而且还不需要采用任何光学滤波器,结构更简单,可调谐性更高,在方案中演示了以10GHz的射频源为本振实现了 40GHz毫米波信号的产生。第二种方案为,采用两个马赫曾德尔调制器并联的结构,并联合光子倍频技术实现了频率可调谐的十二倍频毫米波信号的生成,在方案中演示了以10GHz的射频源为本振实现了 120GHz毫米波信号的产生。第三种方案为采用两个马赫曾德尔调制器分别与光衰减器和光移相器并联的结构,并结光子倍频技术,实现了频率可调谐的十六倍频毫米波信号的生成,在方案中演示了以10GHz的射频源为本振实现了 160GHz毫米波信号的产生。这三种方案,与已报道的光学毫米波产生方案相比,结构更简单,成本更低廉,性能更稳定,同时又无需要采用任何光学滤波器,使系统的可调带宽范围更广。2.针对未来无线接入网中业务种类、信号载频频段不断增加的发展趋势,以及调制矢量数据的毫米波在倍频时相位线性加倍所致相位失序问题,提出了一种基于预编码辅助技术的低成本新型四倍频矢量毫米波产生方案。在本方案中,基于两个马赫曾德尔调制器并联,无需采用任何光学滤波器,实现了非对称边带的四倍频矢量毫米波信号的产生。针对矢量毫米波倍频过程中,相位加倍而造成的信息失序,采用预编码技术,对发射端的矢量信号,进行预补偿,最终实现了在不改变接收端的结构和算法的情况下完成矢量毫米波信号的接收。并进行了仿真演示,采用一个20GHz的射频源基于预编码辅助技术产生了 80GHz的W波段的矢量毫米波信号,并搭载10Gbit/s和20Gbit/s的16相移键控(16 Phase Shift Keying,16PSK)信号,经光纤传输了10公里。3.针对矢量毫米波倍频过程中,相位加倍而造成的相位信息失序问题,以及借助预编码辅助技术的矢量毫米波产生方案所引起的相位星座点的欧式距离缩短的弊端,提出了四种无需预编码辅助技术的矢量毫米波信号生成方案。第一种方案为,采用两个马赫曾德尔调制器分别实现光的单边带调制,使得一个单边带信号调制矢量信息,另一个单边带信号不调制矢量信息,然后控制两个马赫曾德尔调制器间的相位差,抑制掉光载波,最后经光电探测器平方率检测实现了频率加倍,相位信息无损伤的矢量毫米波信号生成,以此方案演示生成了频率为65GHz的V波段正交频分复用(Orthogonal Frenquency Division Multiplexing,OFDM)矢量毫米波信号,并搭载不同符号速率的正交相移键控(Quaternary Phase Shift Keying,QPSK)OFDM 信号经光纤传输了 50公里。第二种方案为,采用单个马赫曾德尔调制器实现了无需预编码辅助技术、无需光学滤波器的正交频分复用矢量毫米波信号的生成。该方案相比于第一种方案结构更简单,仅采用单个马赫增德尔调制器即实现了光的双单边带调制,无需采用光滤波器,生成了频率加倍,相位无损伤的矢量毫米波信号,增加了系统的可调谐性并降低了成本,以此方案演示生成了频率为30GHz的OFDM矢量毫米波信号,并搭载不同符号速率的16进制正交幅度调制(16 Quadrature Amplitude Modulation,16QAM)OFDM 信号经光纤传输了 20公里。为了进一步简化结构,降低系统的复杂度,提出的第三种方案为基于两个并行相位调制器的正交频分复用矢量毫米波信号产生。相位调制器由于不存在直流偏置电压,而无需采用额外的电子线路来控制偏置点的漂移,相位调制器相比于马赫增德尔调制器插入损耗更低,以此方案演示生成了频率为50GHz QPSK调制的OFDM矢量毫米波信号,所产生的OFDM矢量毫米波搭载了符号速率为2.5Gbaud/s和5Gbaud/s的QPSK信号进行了背靠背和10公里光纤传输。第四种方案为基于单相位调制器、无预编码辅助技术的多频率矢量毫米波产生方案。在方案中,仅采用了一个相位调制器来实现多频率调制和未调制光边带信号的产生,根据不同需求,采用波长选择开关来选取不同频率间隔的两个光边带信号拍频来产生多频率的矢量毫米波信号。所选择的两个光副载波具有不对称的阶数,并且可以有几种不同的组合,如(-1,2),(-1,3),(-2,1),(-3,1)等等,本方案中以非对称光边带(-2,1)这种组合为例,基于光通信模拟软件仿真产生了频率为48GHz QPSK调制的矢量毫米波信号,所产生的矢量毫米波搭载了符号速率为1Gbaud/s和2Gbaud/s的QPSK信号进行了背靠背和20km传输。
杜勇涛[6](2021)在《16-QAM CO-OFDM超大容量长距离光通信系统中光纤非线性效应的补偿研究》文中进行了进一步梳理随着工业物联网、智能终端、云集计算和大数据开始在日常生活、工业生产、金融、交通、城市管理、商业以及国防等各个不同领域日益广泛而深入的应用,以5G技术为代表的新一轮数字信息产业的发展正在蓬勃展开。与4G技术相比,5G网络技术要求提供超大容量数字信息的交换和传输能力。为此,从网络技术的角度来看,5G网络的应用也提出了以下新的挑战:(1)5G无线网络基站的数量要远远大于4G无线网络基站的数量;(2)连接5G基站的复杂光通信网络和与之匹配的高速大容量电-光-电转换技术;(3)5G集群之间的超大容量长距离光纤传输技术用来支持城镇、云计算服务中心、大数据存储和处理中心之间海量数据传输与交换的需求,其中超大容量长距离光纤传输技术是实现广域5G网络乃至全球5G网络的技术瓶颈之一。在过去的十年里,研究的重点之一是集中在相干光正交频分复用(Coherent Optical Orthogonal Frequency Division Multiplexing,CO-OFDM)光通信技术来取代当前普遍使用的波分复用(Wavelength Domain Multiplexing,WDM)光通信技术,因为CO-OFDM可以在无需更换光纤链路的条件下,大幅度提高光纤链路的有效通信容量。但是,CO-OFDM采用的相干光正交频分复用技术对光纤的非线性特性造成频偏和相位偏差的敏感性要远远大于WDM网络,尤其是对于超大容量长距离传输的COOFDM光通信链路而言,光纤的非线性特性造成频偏和相位偏差对诸如传输的16进制正交幅度调制信号(16-Quadrature Amplitude Modulation,16-QAM)的影响包括传输带宽、传输质量和传输距离尤为值得关注。这也是当前必须要解决的关键课题之一。本文的主要研究目标是对超大容量长距离传输16-QAM CO-OFDM信号过程中光纤非线性对传输信号带来的损伤和如何对其进行补偿。本文主要探究基于不同种类高度非线性光纤(Highly Non-Linear Fiber,HNLF)的光相位共轭(Optical Phase Conjugation,OPC)技术的补偿效果。本论文所做的工作有:(1)对M-QAM、相干检测和CO-OFDM技术逐一进行理论分析并利用光通信软件进行建模仿真,重点探究了CO-OFDM系统的设计原理。通过仿真软件对800km长距离光纤链路的16-QAM CO-OFDM信号传输进行了建模分析,仿真所得到的结果显示接收端误码率(Bit Error Rate,BER)为0.00089。(2)对16-QAM CO-OFDM信号在长距离光纤传输过程中产生的损伤类型进行了论述。重点对光纤非线性效应中的自相位调制(Self-Phase Modulation,SPM)、交叉相位调制(Cross-Phase Modulation,XPM)和四波混频(Four-Wave Mixing,FWM)进行了数学分析和模拟仿真,并通过理论分析来论证光纤非线性效应对长距离单模光纤和CO-OFDM系统的影响。(3)展示了16-QAM CO-OFDM光纤传输系统中补偿非线性损伤的不同方法,重点研究了利用OPC技术对非线性损伤的补偿,包括装置的工作原理、建模分析和实现方式,并利用“OPYISYSTEM”光仿真软件对其进行了仿真模拟以验证其补偿作用。所得到的理论和仿真结果表示,运用OPC技术可以将无光纤传输的背靠背(Back-to-Back,B2B)系统光信噪比(Optical Signal Noise Ratio,OSNR)灵敏度增加4.7d B,可以将800km长距离光纤传输系统的Q因子提高1.6d B。(4)选用了以4种不同特性的高度非线性光纤(HNLF)作为核心器件的OPC装置,对其所产生的补偿效果开展研究。在实验和仿真的基础上提出了一种定量的测量方法,从输入OPC的信号功率、泵浦功率和HNLF的长度入手,对构成OPC装置的各项参数进行优化处理,对于给定的193.1THz(1552.52nm)16-QAM CO-OFDM信号,4种HNLF的最佳长度分别为550、500、750和800m,OPC的最佳信号功率分别为-2.5、-3.3、-2.4和1.7dBm,泵浦最佳功率分别为23、23、23和21dBm。通过实验论证了光纤色散和光纤非线性损伤对16-QAM CO-OFDM系统的具体影响。并利用检测到的转换效率(Conversion Efficiency,CE)、接收端的BER、星座图和Q因子等参数来对系统的性能进行全面的评估。采用内置550m HNLF A的OPC布置方式产生的补偿效果最佳,得到的系统Q因子为9.8d B,误码率为6.1-4×10。同时,在系统的旁路中加入了色散补偿光纤(Dispersion Compensating Fiber,DCF)与OPC补偿光纤色散的效果形成对比,实验的结果表明OPC对光纤色散的补偿性能优于DCF,采用OPC装置的系统与无任何补偿的系统相比,BER提高了近两个数量级。光纤线性损伤已经不再是制约光纤通信发展的主要因素了,而光纤的非线性损伤随着光纤传输容量和传输距离的不断提高而愈加严重,因此对下一代高速率大容量光纤传输系统而言,如何降低光纤非线性损伤具有十分重要的现实意义。
徐贵勇[7](2021)在《半导体光放大器的增益饱和特性及波长转换技术的理论研究》文中进行了进一步梳理光纤通信是为当今电信网络的最终用户提供宽带服务的驱动力之一,能够覆盖更大的地理区域,光纤被用作传输介质,与传统双绞线电缆的铜线相比,具有很多优点,比如光纤的线径细、重量轻、原料丰富,有利于资源利用,正是这些优点是使人们的日常生活变得轻松。为了支持不断增长的互联网流量和多媒体通信服务,未来的光接入网系统将具有超高传输速度和超大容量的特点。目前接入网面临着光网络不透明、频谱效率低、带宽严重不足等问题,为了解决这一系列问题,本文提出利用易集成的半导体光放大器为波长转换提供一种透明光网络方案;利用高阶调制方案替代传统的直接调制来提高频谱效率;利用相干检测技术接收高阶调制信号并为‘λ-to-the-user’提供一种可行性方案,从而缓解目前带宽严重不足的问题。全文的主要工作有以下几个方面:1、建立基于迭代算法的稳态模型。以半导体光放大器(Semiconductor optical amplifier,SOA)宽带理论模型为基础,在考虑载流子浓度和放大自发辐射噪声变化的情况下,对In P-In Ga As P均匀掩埋的半导体光放大器建立了一种有效的数学模型,实时更新其载流子浓度、放大自发辐射噪声、受激辐射等参数,最终通过该稳态模型得到了在一定偏置电流、输入功率下,器件的增益和噪声指数。2、利用SOA来实现快速波长转换。在前期建立的SOA宽带模型的基础上,进一步分析波长转换中SOA四波混频的理论模型,并对该理论在10 Gb/s传输速率下进行全光波长转换的理论验证实验,并针对某一信道实现波长转换;然后进一步搭建了4×10Gb/s的双向传输系统,通过观察其在多信道下的传输误码率和眼图来分析系统的传输性能。3、实现差分相移键控(Differential phase shift keying,DPSK)高阶调制的相干检测。首先讨论了光调制的工作原理,对基于强度调制和相位调制下的几种新型调制格式进行了仿真研究,通过理论分析对比几种调制格式的优劣。然后利用DPSK调制和解调方案,在40 Gb/s传输速率下对平衡检测和相干检测方案进行对比,进一步验证相干检测在误码率、接收机灵敏度等方面的优势。
孔晓艺[8](2021)在《全光通信系统中利用非线性效应进行调制格式转换和波长转换的仿真研究》文中认为在通信领域,光纤通信占据了重要的位置,特别是在5G(5th-Generation)时代到来之际,面临着大容量的数据交换和传输,信息传输网络的容量利用率需要扩大,传输速率要提高。全光通信系统以其传输信息的高效性逐渐代替了传统的“光-电-光”传输模式。全光信号处理的方式弥补了传统电子信号处理的不足,支持超快透明的光信号处理,是适用于实际通信系统中的信号处理方式。高速全光信号处理功能能够更便捷地实现灵活、低延迟的网络数据流量管理。其中,全光调制格式转换和波长转换在未来的光纤网络设计中,对于提高波长路由能力、提高网络可重构性具有重要作用。本文设计了在全光通信系统中通过非线性效应进行调制格式转换和波长转换的两个方案。传统的信息调制格式转换需要将光信号解调为电信号,对信息进行解调,然后以新的调制格式对信息进行重新调制以进行传输。全光调制格式转换方案简化了光电转换部分,在当信息传输系统中不具有匹配的16QAM(16-Quadrature Amplitude Modulation)接收器时适用,并且本方案所设计的系统可以实现波长组播,即当信息从单用户发送到多端用户时,该系统也适用。先前提出的方案中并无法实现波长多播,或者两个转换后的QPSK(Quadrature Phase Shift Keying)信号的质量不同且较差,本文的方案解决了这些不足。本方案通过激光源与泵浦光在高度非线性光纤(High Nonlinear Fiber,HNLF)中进行四波混频,新生成的光与原16QAM相位方向是正交的,然后通过偏振滤波将两路正交的16QAM分离,通过半导体光放大器(Semiconductor Optical Amplifier,SOA)进行自相位调制和交叉增益调制,使输入脉冲压缩整形,从而实现从16QAM到QPSK调制格式的转换,通过选择合适的光子器件使最终输出的两路QPSK调制格式的信号都保持在X方向,作为并行的两路信号,从而最终实现了从一路16QAM信号到两路并行QPSK信号的调制格式转换。本文对系统转换过程中的光谱图以及星座图的变化作出了分析和解释,根据测得的数据,得到了输入端光信噪比(Optical Signal Noise Ratio,OSNR)、原始信号光的光功率和泵浦光的光功率与系统误码率的测得数据,得出了之间的相互关系和影响趋势。本文用软件对系统进行了仿真实验,证实系统可以成功运行,而且得出了理想的结果,足以证明该方案搭载于现实通信系统中是可以进行实际操作的。在通信系统中,通常会因为波长信道数受限,导致通信过程中发生波长竞争,全光波长转换可以直接实现波长复用,解决信道数受限的问题。通信网络的容量利用率和信号的传输速率的提高,也能够通过全光波长转换的方式得以实现,因此全光波长转换的研究有着重要的现实意义。本文所提出的全光波长转换方案是基于两段级联的HNLF,通过其中的四波混频效应实现转换,输入端为双用户,即两种不同调制格式,分别为16QAM和QPSK。信息通过OFDM(Orthogonal Frequency Division Multiplexing)调制到特定频率的激光器上,经过波长转换后,在接收端的光信号处于另一频率。本方案首次提出通过级联的HNLF进行波长转换,通过模拟仿真验证其可行性,分析了转换过程中光谱图和星座图的变化,分析了输入端不同光信噪比对系统性能的影响趋势,而且还将此系统应用于信息经不同距离光纤传输后进行波长转换,和单用户系统中。通过模拟仿真及数据结果分析,验证了该方案的可靠性。
颜正凯[9](2021)在《非线性效应在全光波长转换技术应用中的研究》文中研究说明传统光通信在信息处理方面通过光、电、光等形式完成数据传输,然而电路和电子器件都能直接影响信息传输速率。在这样的背景下,全光通信技术应运而生,使信息处理更加高效。全光通信根据波长选择器选择路由,所有节点均采用灵敏度高、可靠性好、容量大的光交叉设备,可以大幅度提高信息传输速率。因此,提高全光波长转换效率的装置在高速通信研究中具有重要的意义。本文主要基于非线性效应研究全光波长转换系统,解决了全光波长转换波长竞争、偏振不敏感等问题。基于高阶非线性光纤(High Order Nonlinear Fiber,HNLF)和半导体光放大器(Semiconductor Optical Amplifier,SOA)作为波长转换的器件,探究正交振幅调制(Quadrature Amplitude Modulation,16QAM)和正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号的全光波长转换机制,揭示了非线性效应在全光波长转换过程中对16QAM和OFDM信号造成的影响机理。具体研究内容有以下几方面:(1)理论分析。论文首先对非线性效应自相位调制(Self-Phase Modulation,SPM)、交叉相位调制(Cross-Phase Modulation)、四波混频(Four-Wave Mixing,FWM)进行了理论分析。进而完成了非线性参量和脉冲在HNLF中的传输的理论推导,对SOA进行了数学建模,分析了传输函数以及基本的增益特性。并且推导了非线性效应在全光OFDM系统中由于ASE噪声的公式,最后描述了XPM效应在HNLF中和FWM效应在SOA中进行全光波长转换的理论。(2)仿真实验模拟。利用Optisystem软件建立了基于HNLF的XPM效应和基于SOA的FWM效应原理的全光波长转换的系统,并且在matlab软件中进行数据分析。基于HNLF的XPM效应利用16QAM/OFDM信号和单泵浦光作为信号源,得到了相应的结果,基于SOA的FWM效应利用16QAM信号和平行偏振双泵浦光作为信号源,也得到了相应的结果。(3)模拟结果研究。通过模拟软件,利用以上两种方案完成了全光波长转换技术,分析了泵浦功率和光信噪比,HNLF的长度等参数对XPM效应进行全光波长转换后信号质量的影响。而且研究了SOA转换效率的问题,改变了泵浦光信号的功率、SOA的注射电流、信噪比等参数,得到了转换后信号的误码率和转换效率的变化,并观察了转换后信号的星座图,进而优化了AOWC系统。
吴佳琳[10](2020)在《OFDM光纤通信系统数字去非线性损伤的理论及仿真研究》文中研究表明一直以来,正交频分复用(OFDM)技术凭借着高效的频谱利用率,抗干扰能力强等特点广泛地应用于光通信领域。对于大容量的相干OFDM(CO-OFDM)系统,四波混频(FWM)噪声是限制此类系统性能的主要因素之一。为了更好地优化设计此类系统,应该准确评估FWM噪声对系统性能的影响程度。相位共轭子载波(PCTW)是一种有效的数字去损伤的方法,这种方法之所以可以抑制非线性效应的影响是由于当信号及其共轭分别在两个正交的维度沿光纤链路传输时,它们对应的非线性失真可以在链路终端的数字域线性叠加相消。本文围绕采用时域、子载波域和偏振域三种不同的PCTW方案时,CO-OFDM系统中非线性损伤被抑制的程度展开理论分析和仿真研究。考虑了FWM过程中的相位匹配、走离效应和比特序列的随机性等重要影响因素,推导了正交幅度调制(QAM)PCTW CO-OFDM系统中FWM噪声的半解析理论计算模型。发现不同PCTW实现方案时,FWM噪声方差有不同的组成特点。利用该半解析理论模型进行了相关计算。基于Optisystem和Matlab软件的协同仿真,搭建了PCTW OFDM-WDM仿真平台,得到了相对较佳的PCTW实现方案,对比了16进制QAM和16进制相移键控(PSK)两种不同调制格式下PCTW OFDM-WDM系统性能的优劣。本文中所推导的三种PCTW实现方案时的CO-OFDM半解析FWM理论计算模型对高效评估FWM噪声对此类系统的性能影响程度具有重要意义。基于Optisystem和Matlab协同仿真平台的搭建也对优化此类系统有一定的参考价值。
二、Numerical Simulation for FWM Power Evaluation in Optical Fiber Transmission Systems(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、Numerical Simulation for FWM Power Evaluation in Optical Fiber Transmission Systems(论文提纲范文)
(1)纠缠态连续变量量子密钥分发的量子—经典信道复用技术及源无关安全性研究(论文提纲范文)
中文摘要 |
ABSTRACT |
第一章 绪论 |
1.1 量子信息 |
1.2 量子密钥分发概述 |
1.3 论文内容安排 |
第二章 光纤信道纠缠态连续变量量子密钥分发实验 |
2.1 引言 |
2.2 实验系统及关键技术 |
2.2.1 实验装置 |
2.2.2 自由空间到光纤光耦合技术 |
2.2.3 掺铒光纤放大器 |
2.2.4 探测器性能 |
2.3 数据处理过程 |
2.3.1 数字混频滤波 |
2.3.2 数据同步 |
2.3.3 最优纠缠度理论 |
2.3.4 关联度值的修正 |
2.4 实验结果与分析 |
2.5 本章小结 |
第三章 多路强经典光与纠缠态CV-QKD的密集波分复用 |
3.1 引言 |
3.2 额外噪声源分析 |
3.2.1 复用器的隔离度 |
3.2.2 瑞利散射 |
3.2.3 受激非弹性散射 |
3.2.4 交叉相位调制 |
3.3 自发拉曼噪声 |
3.4 四波混频噪声 |
3.4.1 光纤中四波混频场理论 |
3.4.2 四波混频产生额外噪声理论模型 |
3.4.3 四波混频噪声光子数的测量 |
3.4.4 四波混频产生额外噪声的测量 |
3.5 纠缠态CV-QKD与强DWDM经典通道共存 |
3.6 本章小结 |
第四章 基于纠缠态的源无关CV-QKD实验验证 |
4.1 引言 |
4.2 实验装置 |
4.3 最佳纠缠度参数选择 |
4.4 测量基的随机切换 |
4.5 测量结果与分析讨论 |
4.6 本章小结 |
第五章 用于纳秒脉冲光场测量的时域平衡零拍探测器 |
5.1 引言 |
5.2 探测器的设计 |
5.3 探测器信噪比计算 |
5.4 探测器的制作过程 |
5.5 探测器的性能测试 |
5.5.1 实验测试装置与调试过程 |
5.5.2 真空起伏噪声轨迹图的测量 |
5.5.3 光脉冲分辨率 |
5.5.4 线性响应 |
5.5.5 探测器稳定性测试 |
5.6 本章小结 |
第六章 工作总结及展望 |
6.1 本文小结 |
6.2 研究展望 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
个人简况及联系方式 |
(2)高速光WDM系统中的非线性效应及其补偿(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 光波分复用系统 |
1.2.2 数字反向传输算法 |
1.2.3 概率整形技术 |
1.3 论文的主要工作内容 |
1.4 论文的组织结构 |
第二章 相干光WDM通信系统 |
2.1 相干光通信系统概述 |
2.2 相干光系统理论模型 |
2.2.1 光发射机 |
2.2.2 光纤信道 |
2.2.3 光接收机 |
2.3 相干光通信系统的DSP算法原理 |
2.3.1 频偏估计 |
2.3.2 相偏估计 |
2.3.3 时钟提取和同步 |
2.4 本章小结 |
第三章 相干光WDM传输系统的非线性效应及噪声估计模型 |
3.1 光通信的非线性效应 |
3.1.1 受激布里渊散射和受激拉曼散射 |
3.1.2 自相位调制和交叉相位调制 |
3.1.3 四波混频 |
3.2 非线性效应理论推导 |
3.2.1 波动方程 |
3.2.2 亥姆赫兹方程推导 |
3.3 相干光WDM系统中非线性噪声的估计模型 |
3.3.1 非线性效应的微扰分析 |
3.3.2 非线性效应噪声模型 |
3.3.3 相干光WDM系统非线性效应的仿真分析 |
3.3.4 非线性噪声的主要成分 |
3.3.5 弹性光WDM系统非线性效应的仿真分析 |
3.4 本章小结 |
第四章 相干光传输系统传输补偿算法 |
4.1 非线性薛定谔方程及其分布傅里叶数值解法 |
4.2 非线性薛定谔方程求解的仿真分析 |
4.3 基于数字反向传输算法的非线性补偿 |
4.3.1 数字反向传输算法理论 |
4.3.2 DBP及有关分布傅里叶计算方法 |
4.3.3 DBP补偿算法仿真结果分析 |
4.4 基于二分搜索的改进DBP补偿方案 |
4.4.1 改良DBP算法原理 |
4.4.2 代价函数的设计 |
4.4.3 基于二分的搜索算法 |
4.4.4 性能分析 |
4.5 本章小结 |
第五章 概率整形与数字反向传输算法的联合补偿方案 |
5.1 概率整形技术 |
5.1.1 研究的必要性 |
5.1.2 概率整形原理分析 |
5.1.3 信号分布和映射规则 |
5.2 常规恒等量分布匹配 |
5.2.1 算法原理 |
5.2.2 应用CCDM的光通信系统 |
5.2.3 CCDM仿真分析 |
5.3 概率整形和数字反向传输算法联合补偿仿真 |
5.3.1 联合补偿方案设计 |
5.3.2 联合补偿性能分析 |
5.3.3 不同步长大小下传输性能分析 |
5.3.4 不同光纤跨段大小下传输性能分析 |
5.4 本章小结 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文目录 |
(3)全光OFDM系统中的光学传输损伤及其抑制(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 光纤通信系统的研究背景 |
1.2 全光OFDM系统研究现状 |
1.3 论文研究内容和创新点 |
1.4 论文组织结构 |
第二章 全光OFDM系统原理及关键技术 |
2.1 引言 |
2.2 全光OFDM系统原理 |
2.3 全光OFDM系统关键技术 |
2.3.1 全光OFDM系统发射机相关技术 |
2.3.2 全光OFDM系统接收机相关技术 |
2.3.3 全光OFDM系统接收端的数字信号处理技术 |
2.4 全光OFDM系统在光纤传输中受到的光学传输损伤 |
2.4.1 衰减 |
2.4.2 色散 |
2.4.3 非线性损伤 |
2.5 本章小结 |
第三章 光纤中光学传输损伤对全光OFDM信号的影响 |
3.1 引言 |
3.2 全光OFDM信号传输模型 |
3.2.1 全光OFDM信号在光纤传输时的非线性耦合方程 |
3.2.2 求解非线性耦合方程的数值方法 |
3.3 全光OFDM仿真系统搭建 |
3.4 仿真结果分析 |
3.4.1 色散对系统传输质量的影响 |
3.4.2 非线性效应对系统传输质量的影响 |
3.5 本章小结 |
第四章 一种提高全光OFDM系统抗色散能力的方案 |
4.1 引言 |
4.2 插入光CP的全光OFDM系统的最佳接收 |
4.2.1 光CP的插入方法 |
4.2.2 全光OFDM系统插入CP后的最佳采样点 |
4.2.3 插入CP前后系统抗色散能力的对比 |
4.3 高斯型滤波器对全光OFDM系统抗色散能力的提升 |
4.3.1 基于高斯型滤波器的全光OFDM系统 |
4.3.2 基于高斯型与sinc型滤波器的系统抗色散能力的对比 |
4.3.3 仿真分析 |
4.4 本章小结 |
第五章 一种提高全光OFDM系统抗FWM效应能力的方法 |
5.1 引言 |
5.2 插入GI的全光OFDM系统 |
5.2.1 全光OFDM系统插入GI方法 |
5.2.2 插入GI后的全光OFDM系统的最佳接收 |
5.3 通过对子载波进行分组时延从而提高系统抗FWM效应的能力 |
5.3.1 对插入GI的子载波分组时延从而降低FWM效应影响的原理 |
5.3.2 仿真系统的搭建与设计 |
5.3.3 仿真结果的分析 |
5.4 本章小结 |
第六章 全文总结与展望 |
6.1 总结 |
6.2 未来相关工作展望 |
参考文献 |
附录1: 缩略词列表 |
附录2: 仿真程序的可靠性验证 |
致谢 |
攻读学位期间发表的学术成果 |
(4)基于高阶调制格式的相干光通信系统中非线性均衡技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 论文研究背景和意义 |
1.2 非线性均衡技术的研究现状 |
1.2.1 相位共轭法 |
1.2.2 Volterra级数非线性均衡技术 |
1.2.3 数字后向传播算法 |
1.2.4 基于微扰理论的非线性均衡技术 |
1.2.5 基于机器学习的非线性均衡技术 |
1.3 论文的主要研究内容和创新点 |
1.4 论文的组织结构 |
第二章 相干光通信系统 |
2.1 引言 |
2.2 相干光通信系统的高阶调制 |
2.2.1 马赫增德尔调制器(MZM)及其工作原理 |
2.2.2 I/Q调制器的结构及其工作原理 |
2.2.3 高阶调制格式 |
2.3 相干光通信系统中的信号损伤 |
2.3.1 放大器自发辐射噪声 |
2.3.2 激光器引入的频差和相位噪声 |
2.3.3 光纤损耗 |
2.3.4 色度色散 |
2.3.5 偏振模色散 |
2.3.6 光纤非线性效应 |
2.4 相干检测技术 |
2.5 数字信号处理技术 |
2.5.1 IQ不平衡补偿和正交归一化 |
2.5.2 色散补偿 |
2.5.3 时钟恢复 |
2.5.4 偏振解复用和偏振模色散补偿 |
2.5.5 频偏估计 |
2.5.6 载波相位恢复 |
2.6 本章小结 |
第三章 相干光通信系统中非线性判决算法研究 |
3.1 引言 |
3.2 基于高斯混合聚类的非线性判决算法 |
3.2.1 高斯混合聚类的基本原理 |
3.2.2 基于高斯混合聚类的M-QAM信号非线性判决算法 |
3.2.3 高斯混合-最小均方算法(MoG-Least Mean Square) |
3.3 实验验证与结果分析 |
3.3.1 实验系统设置 |
3.3.2 实验结果分析 |
3.4 本章小结 |
第四章 相干光通信系统中基于神经网络的非线性均衡技术研究 |
4.1 引言 |
4.2 基于特征工程-深度神经网络(FE-DNN)的非线性均衡方案 |
4.2.1 神经网络基本原理 |
4.2.2 用于方形M-QAM信号的基于FE-DNN的非线性均衡方案 |
4.3 基于双向门控循环单元神经网络的非线性均衡方案 |
4.3.1 双向门控循环单元神经网络(Bi-GRU)架构 |
4.3.2 用于M-QAM信号的基于Bi-GRU的非线性均衡方案 |
4.3.3 复杂度分析 |
4.4 基于双向长短期记忆神经网络-条件随机场的非线性均衡方案 |
4.4.1 双向长短期记忆神经网络(Bi-LSTM)架构 |
4.4.2 条件随机场(CRF)基本原理 |
4.4.3 用于M-QAM信号的基于Bi-LSTM-CRF的非线性均衡方案 |
4.4.4 复杂度分析 |
4.5 实验验证与结果分析 |
4.5.1 实验系统设置 |
4.5.2 实验结果与分析 |
4.6 本章小结 |
第五章 相干光通信系统中基于微扰理论和回归算法的非线性均衡技术研究 |
5.1 引言 |
5.2 基于微扰理论和回归算法相结合的非线性均衡方案 |
5.2.1 基于微扰理论的光纤传输模型 |
5.2.2 线性回归基本原理 |
5.2.3 支持向量回归(SVR)基本原理 |
5.2.4 用于M-QAM信号的基于回归算法的非线性均衡算法 |
5.3 实验验证与结果分析 |
5.3.1 实验系统设置 |
5.3.2 实验结果与分析 |
5.4 本章小结 |
第六章 总结和展望 |
6.1 本文工作总结 |
6.2 未来工作展望 |
参考文献 |
附录: 缩略词列表 |
致谢 |
攻读学位期间发表的学术论文目录 |
(5)光载射频系统中毫米波及矢量毫米波信号的光子生成技术研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 引言 |
1.2 毫米波光载射频系统的关键技术及研究现状 |
1.2.1 光载毫米波系统的基本架构 |
1.2.2 毫米波信号倍频技术的研究现状 |
1.2.3 光生矢量毫米波信号的研究现状 |
1.3 论文研究内容与创新点 |
1.4 论文组织结构及章节安排 |
第二章 基于外调制器光生毫米波系统的基础理论 |
2.1 引言 |
2.2 光外调制器的基本原理 |
2.2.1 相位调制器 |
2.2.2 马赫曾德尔调制器 |
2.3 外调制器的基本调制方式 |
2.3.1 光双边带调制 |
2.3.2 光单边带调制 |
2.3.3 光载波抑制调制 |
2.3.4 光偶数边带调制 |
2.3.5 光奇数边带调制 |
2.4 预编码辅助技术 |
2.5 本章小结 |
第三章 基于外调制器的可调谐毫米波信号产生技术研究 |
3.1 引言 |
3.2 基于单MZM频率可调的四倍频毫米波信号产生方案 |
3.2.1 基本结构与工作原理 |
3.2.2 仿真验证及结果分析 |
3.3 基于DPMZM无需光滤波器的十二倍频毫米波产生方案 |
3.3.1 基本结构与工作原理 |
3.3.2 仿真验证及结果分析 |
3.4 基于双MZM无需光学滤波器的十六倍频毫米波信号产生方案 |
3.4.1 基本结构与工作原理 |
3.4.2 仿真验证及结果分析 |
3.5 本章小结 |
第四章 基于预编码辅助技术的矢量毫米波产生技术研究 |
4.1 引言 |
4.2 光纤色度色散对光载毫米波信号的影响 |
4.3 基于预编码辅助技术的新型四倍频毫米波产生方案 |
4.3.1 基本结构与工作原理 |
4.3.2 仿真验证及结果分析 |
4.4 本章小结 |
第五章 无预编码辅助技术的矢量毫米波产生技术研究 |
5.1 引言 |
5.2 基于DPMZM无预编码的V波段OFDM矢量毫米波产生方案 |
5.2.1 基本结构与工作原理 |
5.2.2 仿真验证及结果分析 |
5.3 基于单个MZM无预编码的OFDM矢量毫米波产生方案 |
5.3.1 基本结构与工作原理 |
5.3.2 仿真验证及结果分析 |
5.4 基于两个并行相位调制器的OFDM矢量毫米波产生 |
5.4.1 基本结构与工作原理 |
5.4.2 仿真验证及结果分析 |
5.5 基于单相位调制器无预编码的矢量毫米波产生方案 |
5.5.1 基本结构与工作原理 |
5.5.2 仿真验证及结果分析 |
5.6 本章小结 |
第六章 总结与展望 |
6.1 论文工作总结 |
6.2 未来工作展望 |
参考文献 |
缩略词对照表 |
致谢 |
攻读学位期间取得的研究成果 |
(6)16-QAM CO-OFDM超大容量长距离光通信系统中光纤非线性效应的补偿研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 5G网络对超长距离大容量光纤传输的需求和挑战 |
1.2 CO-OFDM传输系统的研究背景与意义 |
1.3 论文的研究重点和结构安排 |
1.4 本章小结 |
第二章 M-QAM CO-OFDM传输系统研究 |
2.1 仿真模拟软件“OPTISYSTEM”介绍 |
2.2 M-QAM调制 |
2.2.1 M-QAM的基本原理 |
2.2.2 16-QAM仿真 |
2.3 相干光检测技术 |
2.3.1 相干光检测技术的基本原理 |
2.3.2 相干光检测技术的优势 |
2.4 OFDM传输系统 |
2.4.1 OFDM技术的基本原理 |
2.4.2 OFDM光传输系统的基本原理与结构 |
2.4.3 OFDM系统的优缺点 |
2.5 对16-QAM CO-OFDM传输系统进行建模仿真 |
2.6 本章小结 |
第三章 16-QAM CO-OFDM系统损伤模型 |
3.1 线性损伤 |
3.1.1 光纤损耗 |
3.1.2 放大器自发辐射噪声(ASE) |
3.1.3 光纤色散 |
3.2 非线性损伤 |
3.2.1 受激拉曼散射(SRS) |
3.2.2 受激布里渊散射(SBS) |
3.2.3 自相位调制(SPM) |
3.2.4 交叉相位调制(XPM) |
3.2.5 四波混频(FWM) |
3.3 单模光纤中非线性特征的数学模型 |
3.4 光纤非线性效应在CO-OFDM中的数学模型 |
3.5 本章小结 |
第四章 16-QAM CO-OFDM光纤传输系统非线性损伤的补偿方法 |
4.1 补偿光纤非线性损伤的方法 |
4.2 光相位共轭(OPC)技术 |
4.2.1 OPC的工作原理 |
4.2.2 OPC的数学模型分析 |
4.2.3 OPC对 CO-OFDM系统中FWM损伤补偿的数学模型 |
4.2.4 OPC的实现机制 |
4.3 带有中间链路OPC装置的16-QAM CO-OFDM系统仿真模拟 |
4.4 仿真结果分析 |
4.4.1 泵浦光功率对OPC装置性能的影响 |
4.4.2 有无OPC装置的系统性能比较 |
4.4.3 OPC技术对系统非线性效应的补偿效果分析 |
4.5 本章小结 |
第五章 基于4种高度非线性光纤(HNLF)的OPC补偿效果探究 |
5.1 实验模型的建立 |
5.2 实验结果分析 |
5.2.1 信号和泵浦功率对OPC转换效率(CE)和误码率(BER)的影响 |
5.2.2 HNLF的长度对系统性能的影响 |
5.2.3 有无OPC装置和有无色散补偿光纤(DCF)的系统性能比较 |
5.2.4 4种OPC装置和DCF的补偿效果比较 |
5.3 本章小结 |
第六章 总结与展望 |
6.1 本论文主要工作总结 |
6.2 进一步研究及展望 |
参考文献 |
附录 缩略词一览表 |
攻读硕士学位期间的科研成果 |
致谢 |
(7)半导体光放大器的增益饱和特性及波长转换技术的理论研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 光纤通信技术的发展 |
1.2 国内外研究现状 |
1.2.1 光纤通信系统中的新型调制格式 |
1.2.2 全光网络波长转换技术的研究概况 |
1.3 本课题的研究内容 |
第二章 基于迭代算法的半导体光放大器模型构建 |
2.1 半导体光放大器的结构和工作原理 |
2.2 半导体光放大器基础理论方程 |
2.2.1 常用的半导体光放大器模型介绍 |
2.2.2 半导体光放大器材料模型介绍 |
2.2.3 半导体光放大器行波方程 |
2.2.4 半导体光放大器载流子密度速率方程 |
2.3 半导体光放大器模型的增益饱和特性分析 |
2.4 本章小结 |
第三章 利用SOA-FWM效应波长转换的单纤双向传输研究 |
3.1 基于半导体光放大器四波混频的波长转换研究 |
3.1.1 半导体光放大器四波混频的理论基础 |
3.1.2 基于半导体光放大器四波混频波长转换的仿真研究 |
3.1.3 波长转换结果与分析 |
3.2 基于波长转换的单纤双向光纤通信系统 |
3.2.1 单纤双向传输系统 |
3.2.2 基于波长转换的单ONU单纤双向传输性能分析 |
3.2.3 基于波长转换的多ONU4×10 Gb/s单纤双向传输性能分析 |
3.3 本章小结 |
第四章 DPSK编码原理及40 Gb/s DPSK系统仿真 |
4.1 光调制原理 |
4.1.1 基于强度调制的新型光调制格式 |
4.1.2 基于相位调制的新型光调制格式 |
4.2 40Gb/s DPSK信号调制 |
4.2.1 NRZ-DPSK信号的产生 |
4.2.2 RZ-DPSK 信号和CSRZ-DPSK 信号的产生 |
4.3 40Gb/s DPSK信号解调研究 |
4.3.1 DPSK信号的平衡检测接收性能研究 |
4.3.2 DPSK信号的相干接收性能研究 |
4.4 本章小结 |
主要结论和展望 |
主要结论 |
展望 |
致谢 |
参考文献 |
附录:作者在攻读硕士学位期间发表的论文 |
(8)全光通信系统中利用非线性效应进行调制格式转换和波长转换的仿真研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 论文的研究背景及意义 |
1.2 国内外研究现状 |
1.3 本文的主要内容和创新点 |
1.3.1 本文的创新点 |
1.3.2 本文的主要内容和章节安排 |
第二章 全光通信系统的研究 |
2.1 全光通信系统的系统概述 |
2.1.1 全光通信系统的技术背景 |
2.1.2 全光通信系统的主要特点 |
2.1.3 全光通信系统的技术优势 |
2.2 CO-OFDM系统的发展背景及现状 |
2.3 CO-OFDM全光通信传输系统 |
2.4 .CO-OFDM系统的调制原理 |
2.5 本章小结 |
第三章 全光通信系统中非线性效应的研究 |
3.1 光纤传输中常见的非线性效应及其数学模型 |
3.1.1 四波混频(FWM)效应及其数学模型 |
3.1.2 自相位调制(SPM)效应 |
3.1.3 交叉相位调制(XPM)效应 |
3.2 产生非线性效应的常见介质 |
3.2.1 高度非线性光纤(HNLF) |
3.2.2 半导体光放大器(SOA) |
3.3 本章小结 |
第四章 基于光纤和放大器中的非线性效应实现从16QAM到2×QPSK全光调制格式转换 |
4.1 实现从16QAM到2×QPSK全光调制格式转换的理论分析 |
4.2 从16QAM到 2×QPSK全光调制格式转换的实验设置 |
4.3 从16QAM到 2×QPSK全光调制格式转换的谱图分析 |
4.4 从16QAM到2×QPSK全光调制格式转换的系统性能分析 |
4.5 本章小结 |
第五章 基于四波混频效应的双用户CO-OFDM系统全光波长转换 |
5.1 实现全光波长转换的理论分析 |
5.2 实现全光波长转换方案的仿真实验设置 |
5.3 实现全光波长转换方案的仿真结果分析 |
5.4 多情景下进行全光波长转换的实验方案及仿真结果分析 |
5.4.1 信号经光纤传输后进行全光波长转换的仿真及分析 |
5.4.2 单用户CO-OFDM系统进行全光波长转换的仿真及分析 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 已完成的工作总结 |
6.2 进一步研究及展望 |
参考文献 |
攻读硕士研究生期间发表的相关论文 |
致谢 |
(9)非线性效应在全光波长转换技术应用中的研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 光通信系统的发展趋势 |
1.2 全光波长转换技术研究现状 |
1.3 非线性效应在光通信中的应用 |
1.4 论文的研究重点和结构安排 |
1.5 本章小结 |
第二章 非线性效应理论和全光波长转换器件 |
2.1 非线性折射效应 |
2.1.1 自相位调制 |
2.1.2 交叉相位调制 |
2.1.3 四波混频 |
2.2 高非线性光纤 |
2.2.1 高阶非线性参量 |
2.2.2 脉冲在高非线性光纤中的传输 |
2.3 半导体光放大器 |
2.3.1 工作原理 |
2.3.2 理论模型 |
2.4 本章小结 |
第三章 XPM效应在HNLF中的全光波长转换的研究 |
3.1 OFDM简介 |
3.2 基本理论 |
3.3 仿真系统框图 |
3.4 结果分析 |
3.5 本章小结 |
第四章 FWM效应在SOA中的全光波长转换的研究 |
4.1 不同类型全光波长转换器 |
4.1.1 交叉增益调制型全光波长转换器 |
4.1.2 交叉相位调制型全光波长转换器 |
4.1.3 四波混频型全光波长转换器 |
4.2 基本理论和仿真系统 |
4.3 结果分析 |
4.4 SOA波长转换器的应用 |
4.5 本章小结 |
第五章 总结与展望 |
5.1 总结 |
5.2 展望 |
参考文献 |
攻读硕士学位期间的科研成果 |
致谢 |
(10)OFDM光纤通信系统数字去非线性损伤的理论及仿真研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 光纤通信发展概述 |
1.1.1 光纤通信系统结构 |
1.1.2 光纤通信系统的优点 |
1.1.3 影响光纤通信发展的限制因素 |
1.2 DWDM系统 |
1.2.1 DWDM原理及系统组成 |
1.2.2 DWDM系统的研究意义 |
1.3 光纤通信系统中的损伤 |
1.3.1 线性损伤 |
1.3.2 非线性损伤 |
1.4 本文的主要结构 |
第二章 CO-OFDM系统介绍与非线性效应理论基础 |
2.1 CO-OFDM系统 |
2.1.1 OFDM与 CO-OFDM |
2.1.2 CO-OFDM关键技术 |
2.1.3 16PSK与16QAM调制技术 |
2.2 非线性效应 |
2.2.1 非线性效应的理论基础 |
2.2.2 非线性效应的补偿办法 |
2.3 传统的PCTW抑制非线性效应的方法 |
2.4 改进的PCTW方案 |
2.4.1 广义PCTW方案 |
2.4.2 M-PCTW方案 |
2.5 本章小结 |
第三章 基于多种实现方案的PCTW-QAM-CO-OFDM系统子载波间FWM噪声的理论建模 |
3.1 OFDM系统中16QAM信号的表达式 |
3.2 时域PCTW方案的半解析FWM模型 |
3.2.1 简并FWM模型 |
3.2.2 非简并FWM模型 |
3.3 子载波域PCTW方案的半解析FWM模型 |
3.3.1 简并FWM模型 |
3.3.2 非简并FWM模型 |
3.4 偏振域PCTW方案QAM-OFDM系统的半解析FWM模型 |
3.5 用PCF技术代替PCTW方案的QAM PDM-OFDM系统半解析模型 |
3.6 由于FWM噪声而导致性能下降的表达式 |
3.7 数值结果和讨论 |
3.8 本章小结 |
第四章 基于多种PCTW方案不同调制格式下的仿真研究 |
4.1 CDR系统理论 |
4.2 系统仿真结构 |
4.3 仿真平台搭建 |
4.3.1 Optisystem软件介绍 |
4.3.2 参数设置 |
4.4 仿真结果分析 |
4.4.1 16QAM单信道仿真实验 |
4.4.2 八信道16QAM调制和16PSK调制仿真实验 |
4.5 本章小结 |
第五章 总结与展望 |
参考文献 |
附录1 攻读硕士学位期间撰写的论文 |
附录2 攻读硕士学位期间参加的科研项目 |
致谢 |
四、Numerical Simulation for FWM Power Evaluation in Optical Fiber Transmission Systems(论文参考文献)
- [1]纠缠态连续变量量子密钥分发的量子—经典信道复用技术及源无关安全性研究[D]. 杜珊娜. 山西大学, 2021(01)
- [2]高速光WDM系统中的非线性效应及其补偿[D]. 覃禹让. 北京邮电大学, 2021(01)
- [3]全光OFDM系统中的光学传输损伤及其抑制[D]. 于超. 北京邮电大学, 2021(01)
- [4]基于高阶调制格式的相干光通信系统中非线性均衡技术研究[D]. 刘欣雨. 北京邮电大学, 2021(01)
- [5]光载射频系统中毫米波及矢量毫米波信号的光子生成技术研究[D]. 王东飞. 北京邮电大学, 2021(01)
- [6]16-QAM CO-OFDM超大容量长距离光通信系统中光纤非线性效应的补偿研究[D]. 杜勇涛. 山东师范大学, 2021(12)
- [7]半导体光放大器的增益饱和特性及波长转换技术的理论研究[D]. 徐贵勇. 江南大学, 2021(01)
- [8]全光通信系统中利用非线性效应进行调制格式转换和波长转换的仿真研究[D]. 孔晓艺. 山东师范大学, 2021(12)
- [9]非线性效应在全光波长转换技术应用中的研究[D]. 颜正凯. 山东师范大学, 2021(12)
- [10]OFDM光纤通信系统数字去非线性损伤的理论及仿真研究[D]. 吴佳琳. 南京邮电大学, 2020(03)